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1 Introduction

In the past few years, deep learning models have shown great potential in many areas regarding
natural language understanding such as sentiment analysis, language modeling, or machine translation.
Unfortunately, research on reading comprehension and logical induction is still in its very early stages.
In our work, we attempt to tackle the Story Cloze Task [7]. In this task, one tries to automatically
choose the correct ending for a short story. Unlike in other tasks, the Story Cloze task’s training and
validation phases are conceptually different: during training, the model is given a story consisting of
5 short sentences, whereas for validation, the model is given the first four sentences of a story and
two possibilities for the last sentence. The model has to then choose the correct one, i. e. the most
logical ending for the story out of the two possible endings. The idea behind this task is to see how
well the model can make use of the semantic links between the sentences of the short story and the
ending which are necessary to choose the correct answer.

The most challenging part is the lack of negative endings during the training phase. Models trained on
the validation dataset [8, 9] have shown much higher accuracy on test data than models trained exclu-
sively on the actual training dataset [8, 11], although the training data is much larger. This problem is
caused by the lack of a natural loss function choice for the two different phases. Researchers have
been solving this issue either by generating negative samples (using generative methods: GANs [11]
or language modeling [8]), or by sampling negative endings from the training dataset (discriminative
methods [8]). However, all methods achieve significantly worse results than when training on the
validation data.

Another big difficulty is the large natural variability in plausible and implausible endings for a given
story. Interestingly, humans are able to achieve an accuracy of 100% for this task, indicating that the
task is perfectly solvable despite all the pointed out difficulties.

In our project, we decided to sample the negative endings from the other endings in the training
dataset. We reproduced the work by Roemmele et al. [8] and managed to increase the accuracy. The
improved accuracy is achieved using multiple approaches.

2 Methodology & Model

Our method follows closely the method described in Roemmele et al. [8]. We use a discriminative
binary classifier conditioned on the context sentence. Given the first 4 sentences, the classifier assigns
a probability of being a plausible ending to the last sentence. To overcome the lack of negative
endings during training, we sample them randomly from other endings the training dataset. Our
models utilize the BookCorpus [12] dataset by embedding the story and ending sentences using a
pre-trained embedding model. Specifically, we use Skip-Thought sentence embeddings [5].2 We
concatenate the sentence embeddings from both uni-skip and bi-skip Skip-Thought models. Our
experiments have shown that using both embedding models yields the best results (as already noted
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in the original paper). The binary classifier takes the Skip-Thought embeddings, and predicts the
last sentence’s plausibility (probability of it being a plausible ending). During validation, the model
chooses the most probable ending of the two candidates.

2.1 Re-implementation of RNN GRU

We ran a static one-directional 1000-dimensional GRU RNN on the five Skip-Thought embeddings.
We use the final state as input to an dense output layer with one output neuron, with a sigmoid
activation function – which models the conditional probability that the last sentence is plausible.

After reimplementing the original work, we investigated the impact of replacing the original GRU
cell with more powerful LSTM cells and a basic RNN cell (dense layer and tanh activation). Since
Dropout [10] has been shown to improve performance of models in many use cases, we tried to apply
a Dropout layer on the inputs of the GRU cell, but the effects on performance were not significant.

2.2 RNN shifted negative endings

Inspired by a forum post3 claiming that misspellings in word embeddings can be calculated using the
difference between a misspelled word and a correct word, we tried to generate sentence embeddings
of the negative endings for the positive endings in the training dataset.

Using the first 100 stories in the evaluation set, we calculated the average difference between the
wrong and correct endings. We then trained our binary classifier with negative endings calculated
as the sum of correct ending and the pre-calculated average difference. We realize that in high-
dimensional spaces, it is more common to use cosine similarity. Unfortunately, we did not come up
with an idea of how to sample negative endings with a given cosine distance from the correct ending.

2.3 RNN with attention

A natural step is adding an attention mechanism to the model – both multiplicative (Luong [6]) and
additive (Bahdanau [1]). Given that the sequences are short, the performance increase should not
be large. The mechanisms were designed for translation in a sequence to sequence way. We use a
5-step sequence on the “encoder” side and a 1-step sequence on the “decoder” side (the final RNN
state). We compute alignments and successively the averaged attention state, and concatenate it to the
RNN’s final state before passing both to the fully-connected output layer as previously mentioned.

2.4 Temporal CNN

Instead of an RNN, we ran several temporal convolutions with different kernel sizes (3,4,5) on these
embeddings in parallel, similar to Kim [4]. Lastly, we concatenate the CNN feature maps and use
a 300-output hidden dense layer with Dropout. The motivation for Temporal CNN was a potential
speed-up due to parallelization that is not possible with Gated Recurrent Units (GRUs), at the expense
of a higher number of model parameters (30 million in the TCNN model compared to 17.4 million in
the GRU model). Due to the number of parameters and the short length of sequences (5), the potential
parallelization advantage was not fully leveraged, and the TCNN was actually slower during training.

3 Training

All models are trained with a dense layer with one sigmoid-activated output at the end, and a cross-
entropy loss function with labels 0 and 1. The label 1 means that the ending is plausible, and 0
means it is not. We sampled random negative endings from other stories with the same ratio 1:6 as in
Roemmele et al. We use mini-batches of size 100 and clip gradients to a maximum L2 norm of 10.
In terms of optimization, we tried Adam, AdaDelta, RMSProp, and standard SGD, all of them with
learning rate 0.001. Our experiments confirmed that RMSProp achieves the highest scores for all
models except for the Temporal CNN model, where Adam performed better. We ran all experiment
on GeForce GTX 1080 Ti on ETH Leonhard cluster. Data processing takes about 15 minutes and
training a single epoch about 5 minutes (model times differ minimally).

3http://forums.fast.ai/t/nlp-any-libraries-dictionaries-out-there-for-fixing-
common-spelling-errors/16411/8
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Model Validation accuracy Test accuracy

RNN GRU [8] Rand-6 (orig.) 0.645 0.632
RNN GRU [8] Rand-3 + Back-1 + Near-1 + LM-1 (orig.) 0.656 0.672

RNN GRU [8] (ours) 0.703 0.675
RNN GRU with constant negative embedding 0.682 0.674
RNN LSTM 0.697 0.697
RNN Vanilla (tanh) 0.597 0.568
Bi-RNN GRU 0.684 0.678
RNN GRU with Bahdanau [1] Attention 0.697 0.657
RNN GRU with Luong [6] Attention 0.700 0.675

Temporal CNN 0.689 0.661
Table 1: Accuracy scores achieved by different models.

4 Experiments

We trained all models for 10 epochs (TCNN 30 epochs) and evaluated every 2000 steps. We keep the
three best checkpoints of every model, according to validation set accuracy. Finally, we measure the
accuracy on the test dataset (ROC 2016), using the best checkpoint for each model (Table 1).

Our implementation of Roemmele’s GRU model performs significantly better than the original
implementation, according to reported accuracies. We believe this might be because of the superior
quality of our pre-trained Skip-Thought embeddings.

Generating sentence embeddings for negative endings from the embedding of the correct ending has
proven to have potential, however due to the nature of the method we trained with labels in a 1:1 ratio
instead of 1:6, and the model converged very quickly and started overfitting. We believe generating
more negative samples or decreasing the model complexity would help.

LSTMs generalized better than GRUs (almost no difference between validation and test), which is
probably caused by the extra gates in the LSTM. A large-scale comparison of RNN cells confirms
that LSTMs achieve the best performance in NLU tasks [3]. A vanilla RNN is too simple to learn
meaningful features from context and does not reach 60% accuracy.

The bi-directional GRU falls behind in accuracy because the right context is likely not that important
(backward pass). Srinivasan et al. [9] show that the last sentence is most important for this task, which
confirms our claim. Both attention models perform just as well as the models without them, hence
they might not be useful with the short sequences – the RNN cells have enough capacity to capture
the context. We also tried running models without the RNN (just with attention), but they failed to
achieve accuracy above 60%.

TCNN reaches comparable results; however, the envisioned performance boost is not noticeable,
because the RNN sequences are probably too short (5 nodes), and the sequential processing is not
the bottleneck here. On the other hand, TCNN also has about twice as many parameters as the GRU.
Overall, our best model (chosen based on validation accuracy) is RNN GRU (ours) and the best
checkpoint can be downloaded from PolyBox4.

5 Future Work

We did not attempt to use generative methods for this task, because of the discrepancy in goals
between training to generate positive endings and later evaluating negative endings [11]. Future work
might include designing a generative model conditioned on the labels with negative ending sampling,
potentially using reinforcement learning as suggested by Fedus et. al. [2], especially because the
generator would not differentiable due to the argmax function for predictions.

We believe that the key to solving the task are generative methods with semi-supervised learning.
The lack of negative endings changes this task from a simple binary classification to a conceptually

4https://polybox.ethz.ch/index.php/s/yUr8Iga0OLZ8p6B
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hard problem to model. As mentioned above, training a conditional generative model (possibly a
GAN) to sample realistic positive and negative endings might prove to be useful as pre-training, after
which the model could be left to improve without labels conditioning.

Also a possibility are various semi-supervised approaches leveraging the well-trained embedding
space of the Skip-Thought embeddings, similar to our constant negative embedding experiment.
With a smart strategy of negative ending re-sampling based on the currently trained model, it could
converge to better results.

6 Conclusion

We re-implemented the model from Roemmele et al. [8] and achieved an even higher accuracy.
Furthermore, we explored several variations of the model and analyzed their performance. Our
experiments confirm that a GRU RNN in combination with pre-trained Skip-Thought embeddings
achieves the best results. Even though our reported results are close to state-of-the-art, current
models clearly aren’t powerful enough with the currently available data and computation to learn a
“world-view” notion, and therefore fall short of human performance.
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