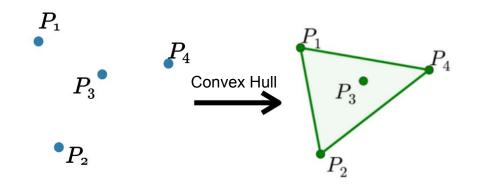
Pointer Networks

Pointer network slides by Keon Kim (36-43)

<u>https://www.slideshare.net/KeonKim/attention-mechanisms-with-tensorflow</u>



Pointer Networks Review

Pointer Networks 'Point' Input Elements!

In Ptr-Net, we do not blend the encoder state to propagate extra information to the decoder like standard attention mechanism.

 \mathbf{y}_{t-1} y_t $\boldsymbol{\theta}_{t1}$ e_{t2} a_{t,1} a+ at.3 Пт h⊤ X X_{2} Хт

Standard Attention mechanism

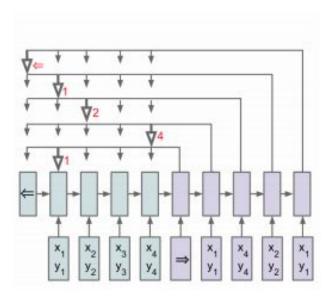
But instead ...

Pointer Networks 'Point' Input Elements!

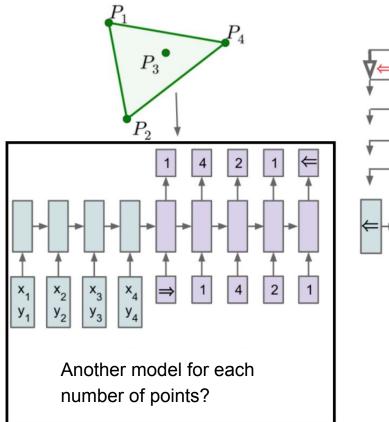
We use $e_{ij} = v_a^\top \tanh(W_a s_{i-1} + U_a h_j)$

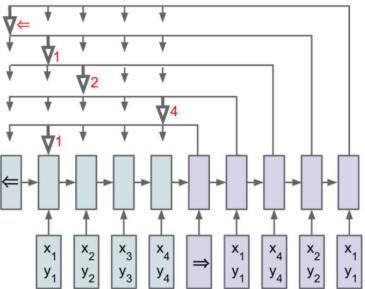
as pointers to the input elements

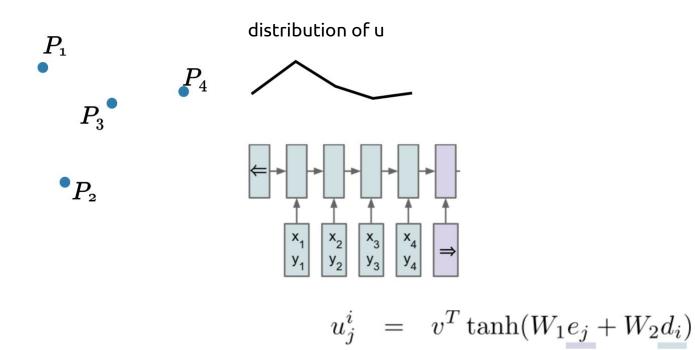
Ptr-Net approach specifically targets problems whose outputs are discrete and correspond to positions in the input

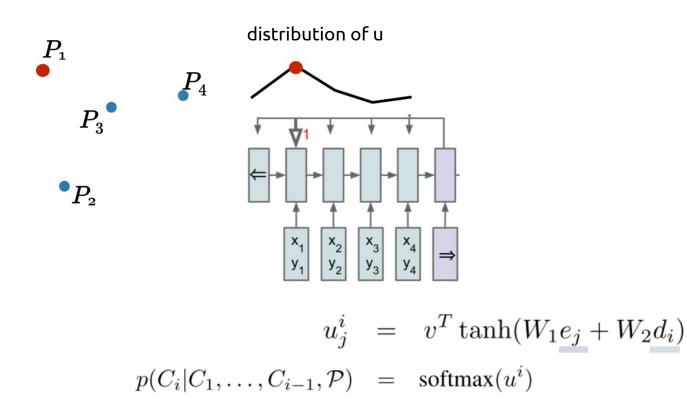


Pointer Network

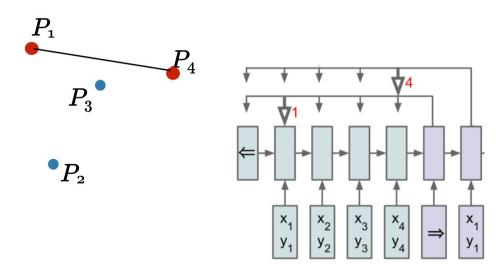


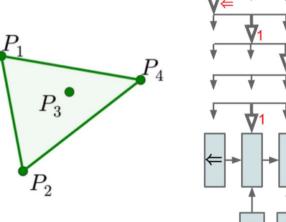


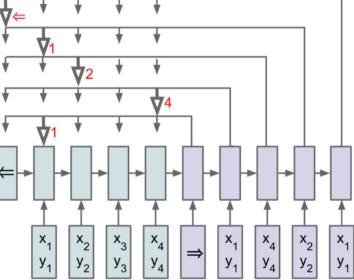




Distribution of the Attention is the Answer!

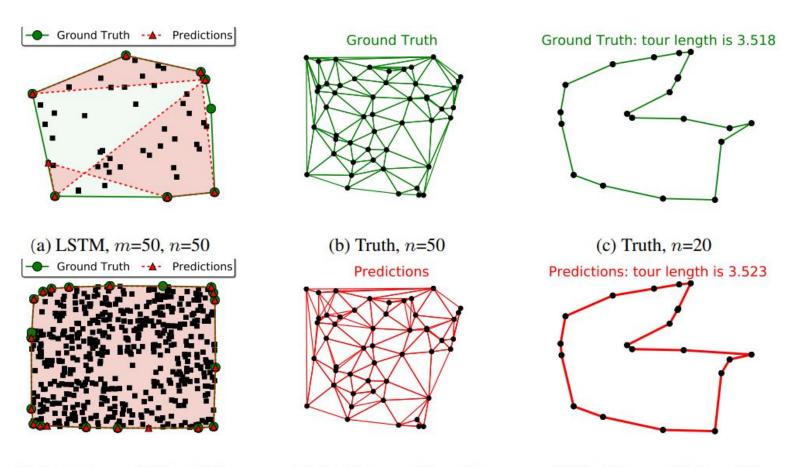






METHOD	TRAINED n	\overline{n}	ACCURACY	AREA
	50	50	1.00	TAIL
LSTM [1]	50	50	1.9%	FAIL
+ATTENTION [5]	50	50	38.9%	99.7%
PTR-NET	50	50	72.6%	99.9%
LSTM [1]	5	5	87.7%	99.6%
PTR-NET	5-50	5	92.0%	99.6%
LSTM [1]	10	10	29.9%	FAIL
PTR-NET	5-50	10	87.0%	99.8%
PTR-NET	5-50	50	69.6%	99.9%
PTR-NET	5-50	100	50.3%	99.9%
PTR-NET	5-50	200	22.1%	99.9%
PTR-NET	5-50	500	1.3%	99.2%

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In *Advances in Neural Information Processing Systems* (pp. 2692-2700).



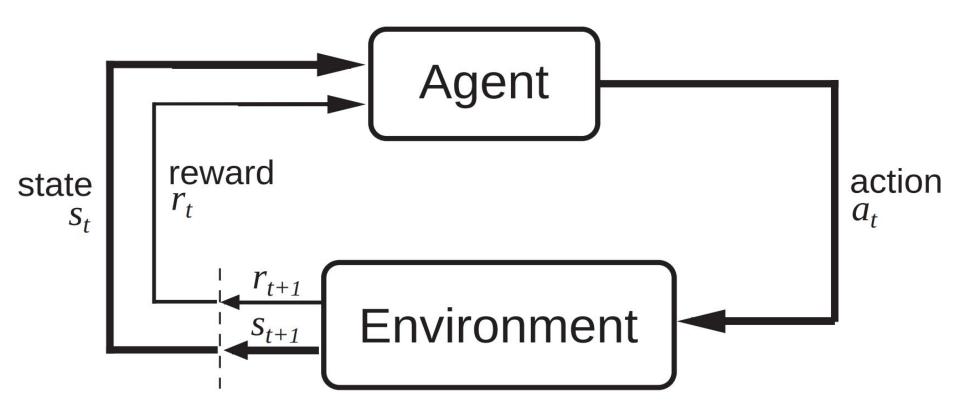
(d) Ptr-Net, *m*=5-50, *n*=500 (e) Ptr-Net , *m*=50, *n*=50 (f) Ptr-Net , *m*=5-20, *n*=20 Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In *Advances in Neural Information Processing Systems* (pp. 2692-2700).

n	OPTIMAL	A1	A2	A3	PTR-NET
5	2.12	2.18	2.12	2.12	2.12
10	2.87	3.07	2.87	2.87	2.88
50 (A1 TRAINED)	N/A	6.46	5.84	5.79	6.42
50 (A3 TRAINED)	N/A	6.46	5.84	5.79	6.09
5 (5-20 TRAINED)	2.12	2.18	2.12	2.12	2.12
10 (5-20 TRAINED)	2.87	3.07	2.87	2.87	2.87
20 (5-20 TRAINED)	3.83	4.24	3.86	3.85	3.88
25 (5-20 TRAINED)	N/A	4.71	4.27	4.24	4.30
30 (5-20 TRAINED)	N/A	5.11	4.63	4.60	4.72
40 (5-20 TRAINED)	N/A	5.82	5.27	5.23	5.91
50 (5-20 TRAINED)	N/A	6.46	5.84	5.79	7.66

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In *Advances in Neural Information Processing Systems* (pp. 2692-2700).

Neural Combinatorial Optimization

with Reinforcement Learning



Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

Input: a differentiable policy parameterization $\pi(a|s, \theta), \forall a \in \mathcal{A}, s \in \mathbb{S}, \theta \in \mathbb{R}^n$ Input: a differentiable state-value parameterization $\hat{v}(s, \mathbf{w}), \forall s \in \mathbb{S}, \mathbf{w} \in \mathbb{R}^m$ Parameters: step sizes $\alpha > 0, \beta > 0$

Initialize policy weights $\boldsymbol{\theta}$ and state-value weights \mathbf{w} Repeat forever:

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot | \cdot, \theta)$ For each step of the episode $t = 0, \ldots, T - 1$:

 $G_t \leftarrow \text{return from step } t$

$$\leftarrow G_t - v(S_t, \mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \beta \delta \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{\gamma}^t \delta \nabla_{\boldsymbol{\theta}} \log \pi(A_t | S_t, \boldsymbol{\theta})$$

Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

Algorithm 1 Actor-critic training

- 1: **procedure** TRAIN(training set S, number of training steps T, batch size B)
- Initialize pointer network params θ 2:
- 3: Initialize critic network params θ_v
- for t = 1 to T do 4:
- $s_i \sim \text{SAMPLEINPUT}(S)$ for $i \in \{1, \ldots, B\}$ 5: 6:
- $\pi_i \sim \text{SAMPLESOLUTION}(p_{\theta}(.|s_i)) \text{ for } i \in \{1, \ldots, B\}$ 7:
 - $b_i \leftarrow b_{\theta_n}(s_i)$ for $i \in \{1, \ldots, B\}$
- $g_{\theta} \leftarrow \frac{1}{B} \sum_{i=1}^{B} (L(\pi_i | s_i) b_i) \nabla_{\theta} \log p_{\theta}(\pi_i | s_i)$ 8:

9:
$$\mathcal{L}_v \leftarrow \frac{1}{B} \sum_{i=1}^B \|b_i - L(\pi_i)\|_2^2$$

- 10: $\theta \leftarrow \text{ADAM}(\theta, g_{\theta})$
- $\theta_v \leftarrow \text{ADAM}(\theta_v, \nabla_{\theta_v} \mathcal{L}_v)$ 11:
- 12: end for
- 13: return θ

14: end procedure

Algorithm 2 Active Search

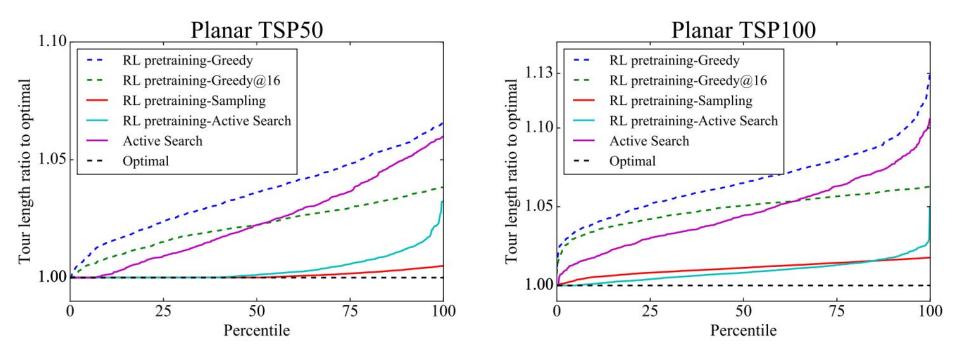
1: procedure ACTIVESEARCH(input s, θ , number of candidates K, B, α) 2: $\pi \leftarrow \text{RANDOMSOLUTION}()$ 3: $L_{\pi} \leftarrow L(\pi \mid s)$ $n \leftarrow \left\lceil \frac{K}{P} \right\rceil$ 4: 5: for $t = 1 \dots n$ do 6: $\pi_i \sim \text{SAMPLESOLUTION}(p_{\theta}(. \mid s)) \text{ for } i \in \{1, \dots, B\}$ 7: $j \leftarrow \operatorname{ARGMIN}(L(\pi_1 \mid s) \dots L(\pi_B \mid s))$ 8: $L_i \leftarrow L(\pi_i \mid s)$ 9: if $L_i < L_{\pi}$ then 10: $\pi \leftarrow \pi_i$ $L_{\pi} \leftarrow L_{i}$ 11: 12: end if $g_{\theta} \leftarrow \frac{1}{B} \sum_{i=1}^{B} (L(\pi_i \mid s) - b) \nabla_{\theta} \log p_{\theta}(\pi_i \mid s)$ 13: $\theta \leftarrow \text{ADAM}(\theta, q_{\theta})$ 14: $b \leftarrow \alpha \times b + (1 - \alpha) \times (\frac{1}{B} \sum_{i=1}^{B} b_i)$ 15: 16: end for 17: return π 18: end procedure

Task	Supervised RL pretraining			AS	Christo	OR Tools'	Optimal		
IdSK	Learning	greedy	greedy@16	sampling	AS	115	-fides	local search	Optimar
TSP20	$3.88^{(\dagger)}$	3.89		3.82	3.82	3.96	4.30	3.85	3.82
TSP50	$6.09^{(\dagger)}$	5.95	5.80	5.70	5.70	5.87	6.62	5.80	5.68
TSP100	10.81	8.30	7.97	7.88	7.83	8.19	9.18	7.99	7.77

Table 2: Average tour lengths (lower is better). Results marked ^(†) are from (Vinyals et al., 2015b).

Bello, Irwan, et al. "Neural Combinatorial Optimization with Reinforcement Learning." arXiv preprint arXiv:1611.09940 (2016).

Task	# Solutions	RL pretraining					
Iask		Sampling $T = 1$	Sampling $T = T^*$	Active Search			
	128	5.80 (3.4s)	5.80 (3.4s)	5.80 (0.5s)			
TSP50	1,280	5.77 (3.4s)	5.75 (3.4s)	5.76 (5s)			
	12,800	5.75 (13.8s)	5.73 (13.8s)	5.74 (50s)			
	128,000	5.73 (110s)	5.71 (110s)	5.72 (500s)			
	1,280,000	5.72 (1080s)	5.70 (1080s)	5.70 (5000s)			
	128	8.05 (10.3s)	8.09 (10.3s)	8.04 (1.2s)			
TSP100	1,280	8.00 (10.3s)	8.00 (10.3s)	7.98 (12s)			
	12,800	7.95 (31s)	7.95 (31s)	7.92 (120s)			
	128,000	7.92 (265s)	7.91 (265s)	7.87 (1200s)			
	1,280,000	7.89 (2640s)	7.88 (2640s)	7.83 (12000s)			

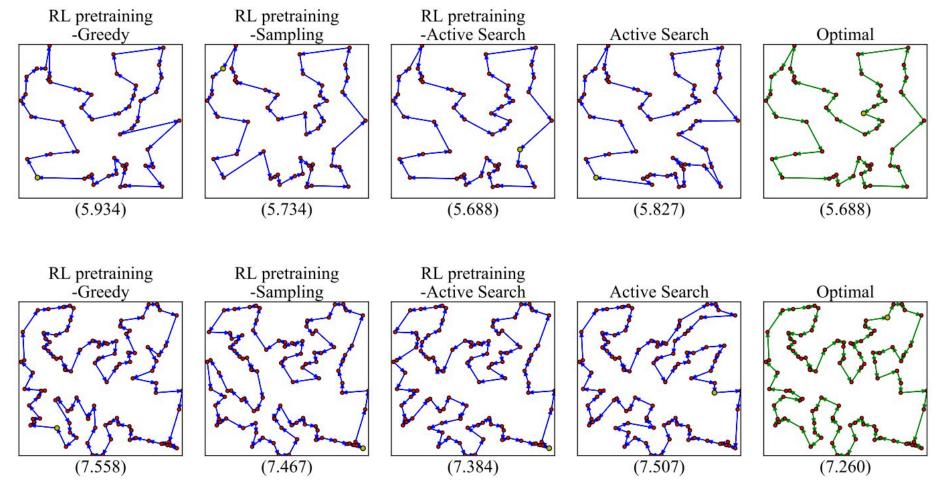


Bello, Irwan, et al. "Neural Combinatorial Optimization with Reinforcement Learning." arXiv preprint arXiv:1611.09940 (2016).

Table 5: Results of RL pretraining-Greedy and Active Search on KnapSack (higher is better).

Task	RL pretraining greedy	Active Search	Random Search	Greedy	Optimal
KNAP50	19.86	20.07	17.91	19.24	20.07
KNAP100	40.27	40.50	33.23	38.53	40.50
KNAP200	57.10	57.45	35.95	55.42	57.45

Bello, Irwan, et al. "Neural Combinatorial Optimization with Reinforcement Learning." arXiv preprint arXiv:1611.09940 (2016).



Bello, Irwan, et al. "Neural Combinatorial Optimization with Reinforcement Learning." arXiv preprint arXiv:1611.09940 (2016).

Unofficial implementation by Taehoon Kim

• <u>https://github.com/devsisters/neural-combinatorial-rl-tensorflow</u>