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Introduction
With the advent of self-driving cars and automated warehouses, transportation
has become an even more essential topic than it was a few years ago. Cheaper
air, bus, and rail travel has enabled people to travel more than they have ever
before. Every day, thousands of companies need to deliver items from one place
to another. Due to economic, ecological, and safety reasons, making the use of
transportation resources more efficient is essential not just for saving money, but
for the future of our planet. It is only natural to try to automate the planning
processes for the various transportation problems. We usually want to calculate
the shortest possible paths for our vehicles to take, make the calculated plans
adhere to laws or regulations, and possibly even accommodate the drivers’ wishes.
Doing all of this by hand is a non-trivial task — today’s computers are far more
effective at solving these problems.

A major part of the solution process for these problems, planning, is usually
defined as the “reasoning side of acting” (Ghallab et al., 2004, Section 1.1). This
means that we want to come up with a sequence of actions that leads to a desired
goal. In transportation, examples of planning problems include finding a sequence
of requests for truck drivers to pick up and deliver packages in a given day, or
orchestrating robots in a warehouse to wrap and transport ordered goods to the
loading dock for shipping.

Automated planning has historically been focused on domain-independent
planning — planning without the use of specific knowledge about the problem’s
domain. As Nau (2007) states, this is mostly due to the research field of planning
wanting to establish itself generally — focusing on a set of domains would not be
useful for that. They also believe that this bias against domain-dependent plan-
ning is not as useful anymore. We can now benefit from the attained theoretical
results and an advancement in computing power, resulting in a wider range of
practical problems that can now be solved using planning techniques.

In this thesis, we will study variants of a specific planning domain introduced
in the 2008 International Planning Competition (IPC) called Transport. It serves
as an abstract representation of a family of related transportation problems and
an important benchmark for planning.

The Transport domain, in its basic form, consists of a road network with items
located at specified locations. The items are to be delivered to their destinations
using a fleet of vehicles. Our aim is to deliver all items with the least total cost,
or in the shortest amount of time, where the cost and/or duration of individual
actions is dependent on the domain variant.

A natural interpretation of the Transport domain is that it represents a set of
trucks delivering packages. However, the exact same domain formulation could
be used to model a ride-sharing service like Uber, where cars drive around a city,
picking up and dropping off people along the way, or a means of modeling a
rush-hour scenario in a public transportation system.

Using several variants of this domain, we will compare the performance of
our custom-built planners to that of the planners taking part in the original
competition and discuss various advantages or shortcomings of these approaches.

To aid in the construction of planners and analysis of generated plans, we
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will also develop a planning system called TransportEditor. It will consist of a
problem visualizer and editor for the Transport domain. To give insight into plan
deficiencies, it will be possible to trace plan actions and see how the planning
state evolves as the plan is executed. For fast prototyping, it will be possible
to generate plans by using built-in and external planners without leaving the
system. Currently, only a handful of similar systems exist and to the best of
our knowledge, none of them are specialized for problems that assume a general
graph with transportation agents in its nodes.

We aim to show that domain-dependent planning has an important role to
play in the future and there are many problems yet to be solved, despite the loss
of generality when compared to domain-independent planning. To show this, we
will design custom planners and try to come up with domain-specific heuristics
and other features to aid our planners in solving Transport problems as well and
as fast as possible.

First, we will formalize and define the specific form of our chosen planning
domain and its variants. We will show how it compares to other similarly themed
problems that are being solved. Afterward, we will describe the approaches we
used to build planners for both a simple sequential transport domain and a more
complicated temporal variant. Finally, we will run benchmarks, comparing the
performance of our planners to current state-of-the-art domain-independent plan-
ners.

4



1. Formal background
In this chapter, we introduce the concept of planning to help us formalize the
studied transportation problems.

1.1 Automated planning
As previously stated, planning is usually defined as the reasoning side of acting —
an abstract deliberation process that chooses and organizes actions by anticipat-
ing their outcomes (Ghallab et al., 2004, Section 1.1). It seems only natural that
we want to have computers do this strenuous activity for us. Automated plan-
ning is an attempt at just that — it is an area of Artificial Intelligence (AI) that
studies the planning process computationally (Ghallab et al., 2004, Section 1.1).

Unfortunately, the specific situations in which we want to use automated plan-
ning are very diverse — from devising a sequence of actions to shut down a nuclear
power plant, planning the movements of a robotic arm on an assembly line, or
devising the complex pattern of motor activations for spacecraft positioning. Due
to this, researchers are often interested in domain-independent planning, where
the planner gets information about both the domain and the specific problem at
run time and attempts to devise a plan using only the provided knowledge and
the planner’s previously built-in processes (Ghallab et al., 2004, Section 1.3).

On the contrary, domain-specific planning, where domain knowledge has been
built into the planner, has obvious advantages when solving problems in that
domain. However, it is almost useless on problems of other domains (Ghallab
et al., 2004, Section 1.3).

1.2 Planning model
As a basis for the later-defined representation of planning, we first define a con-
ceptual model similar to the restricted model in (Ghallab et al., 2004, Section 1.4,
Section 1.5).

Definition 1 (State-transition system). A (restricted) state-transition system is
a 3-tuple Σ = (S, A, γ), where:

• S = {s1, s2, . . .} is a finite and fully observable set of states;

• A = {no-op , a1, a2, . . .} is a finite set of actions;

• γ : S × A → S ∪ {∅} is a state-transition function, such that for all s ∈ S
the function γ(s, no-op) = s; and

• Σ is static and offline, it only changes when an action is applied to it and
does not change during planning.

It is assumed that all actions have no duration.
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For a state s ∈ S, the actions As = {a ∈ A | γ(s, a) ̸= ∅} are called applicable
to the given state s. The no-op action is applicable to all states.

The state-transition function γ and the set of actions A together loosely cor-
respond to what we will call a planning domain. Planning domains define an
abstract representation of actions we work with and how they are related, but
they do not state anything about specific states or actions.

Given a state-transition system Σ, planning aims to find a sequence of actions
to apply to the initial state in order to achieve some objective. The objective can
be defined in various ways — we might want the planner to devise a plan that
does not enter chosen states, or contrary to that, visits each of a set of states, or
one that just ends at a specified state. We will use the last option for formalizing
the notion of a planning problem.

Definition 2 (Planning problem). (Ghallab et al., 2004, Part I) A planning
problem is a 5-tuple P = (S, A, γ, s0, g), where:

• (S, A, γ) is a state-transition system;

• s0 ∈ S is an initial state; and

• g ⊆ S is a set of goal states.

Now that we have defined a planning problem we can specify what we mean
by the planner generating a sequence of actions to achieve a goal — we will call
this sequence a plan.

Definition 3 (Plan). (Ghallab et al., 2004, Section 1.5) For a planning problem
P = (S, A, γ, s0, g), a plan is a finite sequence of actions (a1, a2, . . . , ak), k ∈ N
where ∀i ∈ {1, 2, . . . , k} : ai ∈ A and ∀i ∈ {1, 2, . . . , k} : γ(si−1, ai) = si ∈ S,
while sk ∈ g.

A basic planning model, i.e. the abstraction of a whole real-life scenario we
want to plan for, consists of three components (Figure 1.1):

• A state-transition system Σ, that evolves by using its state-transition func-
tion on the actions it receives;

• A controller, that given an input state s ∈ S and a generated plan, provides
an action a ∈ A as output to the state-transition system, and receives the
new state as feedback; and

• A planner, that uses a description of the state-transition system Σ to syn-
thesize a plan for the controller to execute in order to reach a goal state
from the initial state.

1.3 Classical planning
Although the previously defined restricted state-transition system is a simplifica-
tion of real-world domains, it is a useful one. This simplification has historically
been studied as classical planning.
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ActionsObservations

Figure 1.1: A typical planning model for offline planning — a state-transition
system Σ, a controller executing a plan, and a planner devising the plan based
on an initial state and goals. Adapted from (Ghallab et al., 2004, Figure 1.3).

A different branch of automated planning, neoclassical planning, uses largely
the same theoretical foundations as classical planning. What is different is the
approach to planning using those foundations — instead of search space nodes
being a sequence of actions or a partially ordered set of actions, we view them
as a set of several partial plans (Ghallab et al., 2004, Part II). One of the most
famous results in neoclassical planning is the GraphPlan algorithm published
by Blum and Furst (1997). It is out of the scope of this text to describe it in
detail — see Ghallab et al. (2004, Section 6.3). GraphPlan makes heavy use of
a data structure called a planning graph, which caused a breakthrough in the
field of (domain-independent) planning, resulting in larger problems now being
practically solvable.

We will now describe several theoretical domain-independent representations
of planning problems used in classical planning (Ghallab et al., 2004, Chapter 2),
so that we can formulate the Transport domain using them.

1.3.1 Set-theoretic representation
Leveraging propositional logic, both the planning domain and problem are rep-
resented with the notion of proposition symbols L = {p1, p2, . . .}. Each state
s ∈ S = 2L is defined as a subset of propositions of L — those propositions which
hold in the given state. S is closed under the application of each action a ∈ A.

An action a is a triple of sets of propositions from L. We denote the triple
a = (precond(a), effects−(a), effects+(a)), where:

• precond(a) are the preconditions of an action: the set of propositions that
must hold in the current state for the action to be applicable to it;

• effects−(a) are the negative effects of an action: the set of propositions that
will no longer hold in the state once the action is applied; and
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• similarly, effects+(a) are the positive effects of an action: the set of propo-
sitions that will be true in the state once the action is applied.

Note that an action cannot have the same proposition as a negative and positive
effect at the same time — the sets effects+(a) and effects−(a) are disjoint for all
actions a. The state-transition function is:

γ(s, a) =

⎧⎨⎩(s \ effects−(a)) ∪ effects+(a), if a is applicable to s,

undefined, else.

Goal states Sg are defined as Sg = {s ∈ S | g ⊆ s}, where g ⊆ L is any chosen set
of propositions. The propositions g are called goal propositions.

1.3.2 Classical representation
The classical representation generalizes the set-theoretic representation using
first-order logic, without functions. States are sets of ground atoms of a first-
order language. Actions are ground instances of planning operators, triples de-
noted o = (name(o), precond(o), effects(o)):

• name(o) is a syntactic expression of the given operator;

• precond(o) and effects(o) are sets of literals (atoms or their negations),
similar in use to their equivalents in the set-theoretic case. precond+(o)
and precond−(o) are the positive and negative preconditions of o. Likewise,
effects+(o) and effects−(o) are the positive and negative effects of o.

Note that for a set of literals L, L+ is the set of all atoms in L, and L− is the set
of all atoms whose negations are in L. The state-transition function is defined
similarly to the set-theoretic representation, but using the updated definition of
effects(o). Goal states are defined as the set of states that satisfy g, the goal,
where g is any set of ground literals.

The following is an example of a planning operator for driving a vehicle be-
tween two connected locations:

odrive = (drive(v, f, t), {at(v, f), road(f, t)}, {at(v, t),¬at(v, f)}).

The variable v denotes a vehicle, f and t denote the origin and destination loca-
tions, respectively. The at predicate is true if and only if the vehicle is located
at that position in the given state and the road predicate is true if and only if
a road exists between the two locations. An example of an action instantiated
from the operator (sometimes referred to as an operator instance) for a vehicle
v1 and two locations l1 and l2 would be:

adrive,v1,l1,l2 = (drive(v1, l1, l2), {at(v1, l1), road(l1, l2)}, {at(v1, l2),¬at(v1, l1)}).

Both the set-theoretic and the classical representations follow the Closed world
assumption — any atom/predicate not present in the state does not hold in that
state.
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1.3.3 State-variable representation
The state-variable representation substitutes the use of relations of the previous
representation for functions, using the concept of state variables. State variables
are functions that take the state as an input and serve as characteristic attributes,
defining the state. We usually use a more practical way of defining these functions
when planning — we assume the current state as an input without denoting it,
and instead add different inputs.

For example, a useful set of state-variable functions for a domain that contains
a road network and vehicles might be:

locationv : S → locations,

where v ∈ vehicles. Instead, we could define a single function:

location′ : vehicles× S → locations,

using location′(v, s) = locationv(s), and afterwards:

location′′ : vehicles→ locations,

using location′′(v) = location′(v, statecur), where statecur is the current state.
Planning operators are defined similarly to the classical representation, but

precond(o) is now a set of expressions on state variables and relations. Also,
effects(o) is defined as a set of assignments of values to state variables. For com-
parison, we show the same planning operator as in the classical representation:

odrive = (drive(v, f, t), {at(v) = f, road(f, t)}, {at(v)← t}) .

An example of an action instantiated from this operator for vehicle v1 and two
locations l1 and l2 is:

adrive,v1,l1,l2 = (drive(v1, l1, l2), {at(v1) = l1, road(l1, l2)}, {at(v1)← l2}) .

The state-transition function is defined analogously to the classical represen-
tation: an action a (ground instance of operator o) is applicable to a state s if
the precond(o) condition is true given the values of state variables in state s. The
resulting state is created by changing the state variables according to the assign-
ments in effects(o) and the corresponding values of state variables in state s. The
goal is defined as a set of ground state variables and their corresponding values
(Ghallab et al., 2004, Section 2.5.2).

1.3.4 Extensions of representations
We will later extend the representations using types. To see how types fit into
our previously defined representations, we can define a type as a unary predicate,
which has the value true if and only if the predicate’s argument is of the given
type. We can then add these predicates as preconditions of actions. Adding
types makes domain and problem formulations easier to read and gives additional
information to planners, making them more efficient (Ghallab et al., 2004, Section
2.4.1). As an example of adding types, we show the previous planning operator
for driving with the added vehicle type veh and location type loc:

odrive = (drive(v, f, t), {veh(v), loc(f), loc(t), at(v) = f, road(f, t)}, {at(v)← t}) .
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1.3.5 State-space planning and Plan-space planning
A different way of viewing the state-transition system Σ = (S, A, γ) in a planning
problem P = (S, A, γ, s0, g) (Definition 1 and 2), is that of a labeled, directed
graph G(S, E, w), where:

• E = {(u, v) ∈ S2 | ∃a ∈ A : γ(u, a) = v}; and

• w : E → 2A, such that ∀(u, v) = e ∈ E : w(e) = {a ∈ A | γ(u, a) = v}.

From the definition above, we see that applicable actions correspond to state
transitions. During planning, the plan represented by the current position in the
state space is the sequence of transitions from the start state s0 to the current
state (Ghallab et al., 2004, Section 4.1). State-space planning is a term used for
planning techniques that use the state space for searching for a plan.

An alternative to using the state space is offered by plan-space planning. The
state space is substituted for plan space. Nodes in this space represent partially
specified plans, edges are plan refinement operations (Ghallab et al., 2004, Sec-
tion 5.1). We will not explicitly use plan-space planning in this work, as according
to Ghallab et al. (2004, Section 5.6) it is unfit for incorporating domain-specific
knowledge.

1.3.6 Temporal planning
The addition of time makes modeling planning problems difficult and solving
them even more difficult. However, it also makes most models more realistic and
practically usable.

For an exhaustive introduction to temporal planning, see Ghallab et al. (2004,
Chapter 13 and 14). We will only use the durative action modeling approach
specified by Fox and Long (2003, Section 5). We adapt the following concepts
presented in Ghallab et al. (2004, Section 14.2) that are relevant to modeling
temporal transportation planning problems:

• A temporally qualified expression (tqe) is any expression in the form:

p(x1, x2, . . . , xk)@[ts, te),

where p is a relation of the planning domain and x1, . . . , xk are constants
or object variables. These are similar to state variables in the state-variable
representation, but the values change in time, not between states.
The tqe p(x1, . . . , xk)@[ts, te) asserts that the relation p(x1, . . . , xk) holds
for any time t, where ts ≤ t < te.
The temporal variables ts and te do not specifically represent a numerical
time value, but together with other variables and constraints form a con-
sistent set. It holds that ts < te. For a more precise definition, see Ghallab
et al. (2004, Section 14.2.1).

• A temporal planning operator is a tuple o, defined similarly to the planning
operator in classical representations, but precond(o) and effects(o) are tqes.
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1.4 PDDL
Originally proposed by McDermott et al. (1998) for the 1st International Planning
Competition,1 the Planning Domain Definition Language (PDDL) has become a
de facto standard language for modeling planning domains and problems, contin-
ually evolving to the needs of the research community and the needs of the IPC
itself throughout the years. We will use it as input for our planners.

PDDL was inspired by the language used to describe STRIPS (Fikes and Nils-
son, 1971) and the numerous languages that sparked from it. It has a Lisp-like2

declarative syntax and is very extensible. A basic PDDL domain and problem
definition (without extensions) essentially correspond to the representations de-
fined previously. Confusingly, we call PDDL planning operators actions. Each
action has a list of parameters to be grounded by the planner, a precondition,
and an effect. To denote multiple preconditions and effects, we use the n-ary
predicate and. A full format specification applicable to our use case is available
in Fox and Long (2003, Appendix A).

Not many planners support PDDL in its entirety — they usually support
several “feature subsets”, called requirements. One problem with the diversity of
these requirements is that rarely does a single planner support more than a few,
which makes comparing them on a diverse set of problems difficult.

An important version of PDDL, version 2.1, added support for temporal plan-
ning using durative actions (Fox and Long, 2003, Section 5), an analog of the pre-
viously defined temporal planning operators. Specifically, every durative action
has a duration, specified either by a constant or a numeric fluent (a function
with numerical values that can change over time). Also, instead of a precondition
it introduces a condition (it is not necessary that the condition takes place before
the action). We will only use so-called discretized durative actions, meaning that
both the condition and the effect represent a temporally qualified expression,
denoted using three unary PDDL predicates:

• at start, where the parameter predicate must hold or the parameter effect
must be applied at the start of the action;

• at end, where it must hold or be applied at the end of the action; and

• over all, where the parameter must hold over the duration of the action,
start and end non-inclusive. This temporal predicate is only applicable to
preconditions of an action. When using continuous durative actions which
have continuous effects (for example, generating heat and boiling water),
effects are modeled using different syntactical constructs (Fox and Long,
2003, Section 5.3).

Over time, PDDL has evolved from the originally proposed version 1.2 to the
now standard version 3.1. Several extensions and successors were proposed, like
Multi-Agent PDDL (MA-PDDL) and Probabilistic PDDL (PPDDL).

PDDL does not specify a representation for plans. For a specific planning
domain and problem in PDDL, we represent the plan in a format that is a field-
wide consensus. We refer to it as the VAL-like format. VAL (Howey and Long,

1http://ipc98.icaps-conference.org/
2https://en.wikipedia.org/wiki/Lisp_(programming_language)
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2003) is a plan validator created for the IPC. It takes as input (among several
options) three filenames: filename of a planning domain and problem in PDDL,
and a filename for a plan in the mentioned format. As described in Howey and
Long (2003, Figure 2), the approximate format consists of multiple lines in the
following format:

(action_name action_object_literals*)

For temporal domains, the format adds a start time and duration for each line:

start_time: (action_name action_object_literals*) [duration]

Both start_time and duration are floating-point numbers with a dot (.) as a
decimal delimiter. Note that all text between a semicolon (;) and an end-of-line
character sequence (\r, \n, or \r\n) is regarded as a comment and ignored by
all PDDL parsers.

1.5 Planning in practice
In practice, many of the assumptions we made will get violated and many addi-
tional requirements will arise, due to various business or societal requirements.
On the other hand, these assumptions allow us to work on problems that are
more general and can, therefore, be applied to multiple scenarios. Businesses can
often add minor tweaks on top of the obtained results so that their needs are
satisfied. For example, online planning can often be foregone for some form of
windowed planning, where we plan a certain time window offline and move on to
the next window, repeating the process regularly.

Planners, in practice, are computer programs that are fed two text files as
input — the domain file and the problem file. After that, they proceed with their
internal calculations and upon finishing, return a plan (or not). We can then
evaluate the plan, see if it meets our criteria, and, potentially, execute it in the
real world.

What we are missing from a bare plan is the allocation of specific resources.
Scheduling addresses the problem of how to perform a given set of actions (a
plan) using a limited number of resources in a limited amount of time, and that
is crucial to practical usage of any plan (Ghallab et al., 2004, Chapter 15).

In this text, we will only study the abstracted and simplified first part of this
whole process — finding the “best” actions that lead to a specified goal.
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2. Transport domain formulation
In this chapter, we will formulate and later formalize variants of the Transport
domain. We will also mention a few related transportation problems that have
been studied in the past.

2.1 Description of Transport domain variants
Transport is a planning domain designed for the International Planning Competi-
tion (IPC), which is part of the International Conference on Automated Planning
and Scheduling (ICAPS). Originally, Transport appeared at IPC-61 which took
place in 2008. Since then, it has been used in two IPCs, specifically IPC-72 in
2011 and IPC-83 in 2014.

There are a few basic formulations of the Transport domain family (i.e. similar
Transport domain variants) which we will describe in the following sections.

2.1.1 Common traits of Transport domains
Transport is a logistics domain — vehicles drive around on a (generally asym-
metric) positively-weighted oriented graph, picking up and dropping packages
along the way. All vehicles have limited capacities (the sum of package sizes they
can carry). Picking up or dropping a package costs 1 unit. The cost of driving
along a road is equal to the edge weight (in other words, the road length). Road
lengths are always positive integers. The general goal is to minimize the total
cost while delivering all packages to their destination, where the total cost of a
plan is defined as the sum of costs of all actions in the plan. A few Transport
problems also request that the vehicles be positioned at certain locations in the
graph after finishing their deliveries.

One variant which we will not study in this work is the NoMystery domain
from IPC 2011, devised as a simplification of Transport (using only a single
vehicle with no capacity constraints). The domain assumes fuel costs for driving
on roads, with the vehicle having an initial fuel capacity (there is no refueling).
All actions have a cost of 1. It is reasonably straightforward to solve problems of
this variant using domain-specific knowledge as shown in Barták and Vodrážka
(2016): the vehicle is always greedily loaded with all the packages present at a
location when arriving at it and greedily unloaded when it contains a package
which has the given location as a destination. Choosing which roads the vehicle
drives along and thus determining the order of package loading and unloading
while taking into account the fuel constraints is the task that is left for the planner
to solve.

1http://icaps-conference.org/ipc2008/deterministic/Domains.html
2http://www.plg.inf.uc3m.es/ipc2011-deterministic/
3https://helios.hud.ac.uk/scommv/IPC-14/
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Figure 2.1: Road network visualization of the p13 problem from the seq-sat track
of IPC 2008. Red dots represent locations (graph nodes), roads (graph edges) are
represented by black arrows, vehicles are plotted as blue squares, and packages
as purple squares.

2.1.2 Transport STRIPS
STRIPS, the Stanford Research Institute Problem Solver, was a planner proposed
by Fikes and Nilsson (1971). The influence of STRIPS was, however, not only
due to the planner, but the language used to describe its inputs — the planning
operators and goals. That is why we sometimes refer to classical planning (Sec-
tion 1.3) as STRIPS planning. For the purposes of this text, we will use these
terms interchangeably.

In the STRIPS variant of the Transport domain, all packages have a size of
1 and vehicles of a bounded capacity can drive around indefinitely (there is no
notion of fuel or anything similar). The only reason for them not to, is that
driving incurs a cost of its own, usually much larger than picking up or dropping
off packages. This being a classical STRIPS domain, it does not assume time
in any sense, so actions have no duration and are applied one after the other,
sequentially.

This formulation contains three basic planning operators:

• drive, where a vehicle drives to an adjacent location along a road that is
connected to its current location;

• pick-up, where a vehicle that is stationary at a location picks up a co-
located package; and

• drop, where a stationary vehicle drops a package off at the vehicle’s location.

In all the datasets, this domain variant is denoted as Transport sequential
or transport-strips and we will alternate between these terms in this text. See
Figure 2.1 for a visualization of an example problem for this domain.
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2.1.3 Transport Numeric
The numeric variant adds the concept of fuel on top of the STRIPS variant. All
roads have an additional cost, called fuel-demand, which is subtracted from a
vehicle’s fuel-left value if it chooses to drive along that road. Additionally, all
vehicles have a maximum fuel capacity fuel-max, which they regain upon being
the target of a refuel action. This action can only be executed at a location
that is marked as having a petrol station. Petrol stations are static with respect
to a given planning problem instance.

This variant is usually denoted as Transport numeric or transport-numeric.

2.1.4 Transport Temporal
The temporal Transport domain is usually denoted as Transport temporal or, con-
fusingly, also transport-numeric. A major difference with respect to the numeric
variant is the addition of time. All actions now have a duration (pick-up and
drop both have a duration of 1, refuel has a duration of 10, and the duration
of drive is equal to the length of the road we are driving along). Furthermore,
packages now have various sizes (positive integers).

The addition of time poses numerous technical complications when formalizing
this variant — its PDDL formulation significantly differs from the two previous
ones, but only in technical details, not in objectives of the model. One important
technicality is that a vehicle cannot pick up or drop packages concurrently — it
always handles packages one at a time. Also, vehicles cannot do other actions
while driving to another location (they are essentially placed “off the graph” for
the duration of driving).

The overall goal remains largely the same (deliver packages to their destina-
tions), but we no longer optimize the total cost. Instead, we now minimize the
total duration of a plan, defined as the maximum time when an action is still
taking place. In practice, this translates to minimizing maximum end time over
all actions, which is often referred to as minimizing the makespan.

2.2 Formalizing the Transport domain
We will now translate the informal description of the Transport domain from the
previous section to the formal representations we defined in Section 1.3. We will
not formulate all the domain variants in all representations as they are very much
alike and not needed for the comprehension of the following chapters.

2.2.1 Transport’s classical representation
We are now able to show the sequential Transport domain in one of the represen-
tations previously defined, namely, the classical representation (Figure 2.2). For
practical reasons, we will use a slight modification, obtained by adding a limited
concept of functions with finite integer values. It is obvious that we could substi-
tute these functions for the appropriate relations and a finite number of literals
for the values for any given problem instance of the domain in this representation,
so that it adheres to the definition of a classical formulation. For example, we
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drive(v, l1, l2)
;; vehicle v moves from location l1 to an adjacent location l2
precond: at(v, l1), road(l1, l2)
effects: not at(v, l1), at(v, l2)

pick-up(v, l, p, s1, s2)
;; vehicle v picks up package p at location l,
;; decreasing its capacity from s2 to s1
precond: at(v, l), at(p, l), capacity-predecessor(s1, s2),

capacity(v, s2)
effects: not at(p, l), in(p, v), capacity(v, s1),

not capacity(v, s2)

drop(v, l, p, s1, s2)
;; vehicle v drops package p at location l,
;; increasing its capacity from s1 to s2
precond: at(v, l), in(p, v), capacity-predecessor(s1, s2),

capacity(v, s1)
effects: not in(p, v), at(p, l), capacity(v, s2),

not capacity(v, s1)

Figure 2.2: Classical formulation of transport-strips.

could add literals representing a finite set of natural numbers and a predicate
that represents a successor relation, defined as successor(a, b) ≡ a + 1 = b.

Note that this representation does not contain the notion of a total cost of a
plan that we will optimize for later. The predicates and functions used are:

• at(o, l), the package or vehicle o is at the location l;

• capacity(v, s), the vehicle v currently has s free space — s is a variable
for space literals, a set of literals denoting the amount of space (essentially,
these literals are a unary representation of a finite set of integers);

• capacity-predecessor(s1, s2), the space literals represented by s1 and
s2 satisfy the relation s1 + 1 = s2 in the unary representation;

• in(p, v), the package p is in the vehicle v;

• road(l1, l2), the location l1 is directly adjacent to the location l2 by a
road; and

• road-length(l1, l2), the driving distance between location l1 and l2,
modeled as a numerical function. Does not change while planning.

The numeric variant adds the refuel operator, changes the drive operator,
and adds a new fuel-related predicate has-petrol-station(l), that is true when
the given location l has a petrol station. To model fuel, we need the addition of
a few functions, namely:

• fuel-demand(l1, l2), the amount of fuel needed to drive from location
l1 to location l2;
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drive(v, l1, l2)
;; vehicle v moves from location l1 to an adjacent location l2
precond: at(v, l1), road(l1, l2), fuel-left(v) >= fuel-demand(l1, l2)
effects: not at(v, l1), at(v, l2),

decrease(fuel-left(v), fuel-demand(l1, l2))

refuel(v, l)
;; vehicle v is refueled to the maximum at location l
precond: at(v, l), has-petrol-station(l)
effects: assign(fuel-left(v), fuel-max(v))

Figure 2.3: Classical formulation of transport-numeric’s differences compared
to transport-strips.

• fuel-left(v), the amount of fuel left in the vehicle v; and

• fuel-max(v), the maximum amount of fuel the vehicle v can contain, i.e. its
fuel tank capacity.

See Figure 2.3 for the exact differences in the representation after adding fuel.
We also slightly abuse the notation with decrease and assign; the left pa-

rameter’s value is to be decreased by the right parameter’s value or the left
parameter’s value is to be overridden by the right parameter’s value, respectively.

2.2.2 Transport’s state-variable representation
We are now also able to show the sequential Transport domain in the state-
variable representation (Figure 2.4). Some predicates (at, capacity, and in)
have been transformed into state-variable functions with largely the same seman-
tics as in Section 2.2.1. Again, we leave out the total cost notion.

As before, the numeric variant adds the refuel operator along with a few fuel-
related state-variable functions and predicates, and changes the drive operator
(Figure 2.5).

We will represent the temporal variant of Transport using a variant of the
state-variable representation using temporal planning operators, further referred
to as the temporal state-variable representation. On top of fuel-related predicates
and functions from numeric Transport, temporal Transport adds:

• package-size(p), a function with positive integer values representing the
size of the package p (does not change during planning); and

• ready-loading(v), a predicate used for “locking” the vehicle v during
pick-up and drop actions (enforcing the property of pairs of these two
actions happening sequentially in time for a given vehicle). It is important
to note that the refuel action does not lock the vehicle, which means that
vehicles can be refueled while dropping off and picking up packages.

Figure 2.6 shows the temporal state-variable representation of Transport tempo-
ral, using a slightly shorter, but clearer notation. Note that both pick-up and
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drive(v, l1, l2)
;; vehicle v moves from location l1 to an adjacent location l2
precond: at(v) = l1, road(l1, l2)
effects: at(v) <- l2

pick-up(v, l, p, s1, s2)
;; vehicle v picks up package p at location l,
;; decreasing its capacity from s2 to s1
precond: at(v) = l, at(p) = l, s1 + 1 = s2, s2 > 0, capacity(v) = s2
effects: at(p) <- nil, in(p) <- v, capacity(v) <- s1

drop(v, l, p, s1, s2)
;; vehicle v drops package p at location l,
;; increasing its capacity from s1 to s2
precond: at(v) = l, in(p) = v, s1 = s2 - 1, capacity(v) = s1
effects: in(p) <- nil, at(p) <- l, capacity(v) <- s2

Figure 2.4: State-variable formulation of transport-strips.

drive(v, l1, l2)
;; vehicle v moves from location l1 to an adjacent location l2
precond: at(v) = l1, road(l1, l2),

fuel-left(v) >= fuel-demand(l1, l2)
effects: at(v) <- l2,

fuel-left(v) <- fuel-left(v) - fuel-demand(l1, l2)

refuel(v, l)
;; vehicle v is refueled to the maximum at location l
precond: at(v) = l, has-petrol-station(l)
effects: fuel-left(v) <- fuel-max(v)

Figure 2.5: Partial state-variable formulation of transport-numeric. Shows the
differences when compared to transport-strips.

drop cancel the at predicate at the start of the action, which forbids parallel
picking up and dropping.

2.2.3 PDDL formulation of Transport
All formulations of the Transport domain use PDDL (Section 1.4) version 2.1,
with the requirement typing, which adds the notion of types for individual lit-
erals. We will call these literals action objects.

The STRIPS variant additionally needs action-costs, a requirement adding
integer costs to individual planning operators. These costs may be constant
(like the ones for pick-up, drop or refuel), or they may be dependent on the
parameters of the instantiated operator (like the cost of drive). The numeric
variant requires numeric-fluents, which introduces native PDDL support for
functions whose values correspond to numbers and can change over time. It

18



drive(v, l1, l2)
;; vehicle v moves from location l1 to an adjacent location l2
duration: road-length(l1, l2)
cond: (at(v) = l1)@s, (road(l1, l2))@s,

(fuel-left(v) >= fuel-demand(l1, l2))@s
effects: (at(v) <- nil)@s, (at(v) <- l2)@e,

(fuel-left(v) <- fuel-left(v) - fuel-demand(l1, l2))@s

pick-up(v, l, p)
;; vehicle v picks up package p at location l
duration: 1
cond: (at(v) = l1)@[s, e), (at(p) = l1)@s, (ready-loading(v))@s,

(capacity(v) >= package-size(p))@s
effects: (at(p) <- nil)@s, (in(p) <- v)@e, (not ready-loading(v))@s,

(capacity(v) <- capacity(v) - package-size(p))@s,
(ready-loading(v))@e

drop(v, l, p)
;; vehicle v drops package p at location l
duration: 1
cond: (at(v) = l1)@[s, e), (in(p) = v)@s, (ready-loading(v))@s
effects: (in(p) <- nil)@s, (at(p) <- l)@e, (not ready-loading(v))@s,

(capacity(v) <- capacity(v) + package-size(p))@e,
(ready-loading(v))@e

refuel(v, l)
;; vehicle v is refueled to the maximum at location l
duration: 10
cond: (at(v) = l1)@[s, e), (has-petrol-station(l))@s
effects: (fuel-left(v) <- fuel-max(v))@e

Figure 2.6: Temporal state-variable formulation of temporal Transport. The
characters s and e represent the start and end temporal variables of the given
action, respectively.

also requires are goal-utilities, used for custom optimization functions and
optional goal predicates. The temporal domain is similar in requirements to
the numeric one, except for substituting goal-utilities for durative-actions
(introduces time and the duration of actions).

For reference, the PDDL representations of sequential and temporal variants
of the Transport domain are attached to this thesis in Attachment 2.

2.3 Related problems
To the best of our knowledge, there has been no attempt at producing domain-
dependent planners for Transport (IPC 2008, 2011, 2014, and unsolvability IPC
2016) or any other similar IPC domain, like Logistics (IPC 1998 and 2000), Depots
(IPC 2002), DriverLog (IPC 2002 and 2014), or Trucks (IPC 2006). All techniques
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Figure 2.7: An example TSP solution through the capitals of Europe. Screenshot
taken from OptaPlanner (De Smet et al., 2017).

we know of applied to Transport so far are the domain-independent planners used
in the three aforementioned competitions.

Most of the research done on transportation related problems and their au-
tomation generally focuses on a famous combinatorial optimization problem, the
Traveling Salesman Problem (TSP). An exhaustive amount of research has been
done on the TSP (Applegate et al., 1998, 2011). Its precise origins are unknown,
but the problem has been on the minds of researchers at least since the end of
the 19th century. The TSP is defined by Applegate et al. (2011) as follows:

Given a set of cities along with the cost of travel between each pair
of them, the traveling salesman problem, or TSP for short, is to find
the cheapest way of visiting all the cities and returning to the starting
point. The “way of visiting all the cities” is simply the order in which
the cities are visited; the ordering is called a tour or circuit through
the cities.

However, the problem we aim to study is more similar to a different optimization
problem similar to the TSP. See Figure 2.7 for an illustrative example of a TSP
problem’s solution.

2.3.1 The Vehicle Routing Problem
The Vehicle Routing Problem (VRP) was first formulated as the Truck Dispatch-
ing Problem by Dantzig and Ramser (1959), modeling a fleet of vehicles delivering
gasoline to service stations. They described VRP as a generalization of the TSP
with multiple vehicles, but it could equivalently be stated that the TSP is a
specialization of the VRP with a single vehicle. The precise formulation of the
Truck Dispatching Problem in Dantzig and Ramser (1959, Section 2) presents a
model with a fleet of identical vehicles departing from a single depot. According
to Braekers et al. (2016, Section 3), this defines what we would call Capacitated
VRP (CVRP) today (Figure 2.8).
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Figure 2.8: An example CVRP solution for 32 customers and one depot. The
dashed line represents the last drive of each vehicle’s route. Image adapted from
OptaPlanner (De Smet et al., 2017).

Many VRP variants have emerged since. Eksioglu et al. (2009) and Braekers
et al. (2016) both review and classify hundreds of papers related to the VRP,
with many more left out. Most of the classified works tend to study the CVRP
problem with minor modifications, hence creating a broad landscape of problems
and a platform to build on in the future. According to the data provided by
Braekers et al. (2016, Table 4), there has been a recent uptick in popularity
for models relatively similar to Transport — specifically, VRPs with backhauls
(returning items from customers to depots), multiple depots (multiple starting
points for vehicles), and with allowed split deliveries (multiple vehicles can serve
a single customer). The literature review on Multiple Depot VRP (MDVRP) in
Montoya-Torres et al. (2015) suggests a big rise in popularity for MDVRP in the
recent past, which provides further proof of relevance for studying the Transport
domain.

Traditional solutions for the VRP include exact approaches like branch and
bound or constraint satisfaction programming that explore the large parts of the
feasible search space, classical heuristics which limit the search space, and also
metaheuristics (general heuristics for devising specific heuristics), like genetic
algorithms, tabu search, and many more.

2.3.2 Comparison of Transport and VRP
The work of NEO Research Group (2013) resulted in a website, which serves as
a comprehensive resource on the history of VRP, definitions of its various flavors,
and an overview of popular solution methods and state-of-the-art results. Accord-
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ing to the taxonomy they propose, a Transport problem could be characterized as
a Multiple Depot, Split Delivery, Capacitated VRP with Satellite Facilities. Mul-
tiple depot means that vehicles can start driving from multiple locations, split
delivery means a single customer can be served by multiple vehicles, capacitated
VRP adds maximum capacities to vehicles, and satellite facilities mean that ve-
hicles can pick items up while on a delivery route. This does not characterize the
Transport domain in every detail, but it is a fairly accurate approximation.

According to another VRP taxonomy and study of papers, presented in Ek-
sioglu et al. (2009) and adapted in Braekers et al. (2016), no research has been
done on a VRP variant with a similar subset of features to those of Transport
in any single study, to the best of our knowledge. Usually, the studied problems
are more constrained than Transport — for example, they make additional as-
sumptions about places where vehicles start or end. Also, VRP in general makes
cooperation of vehicles hard to model, whereas in Transport this is one of the
fundamental elements.

Another important difference between Transport and the VRP is that Trans-
port has a notion of single packages or items. In the VRP, transported goods are
usually regarded as measurable, rather than countable (for example gasoline or
milk vs. letters or parcels). This makes a difference not only in the interpretation,
but also during problem-solving — customers in VRP usually request a quantity
of the delivered item, not specific item instances, like packages being “requested”
by their target locations in Transport.
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3. Transport domain analysis
In this chapter, we will analyze the sequential and temporal variants of the Trans-
port domain. To do this, we will describe the datasets used in our experiments,
and discuss the domain’s properties, which will help us when developing planners.

3.1 Problem complexity
When domain-independent planners solve a sequential Transport problem, they
face a harder task than planners that have access to domain knowledge ahead
of time. For domain-independent planners, deciding whether a plan of a given
length exists (the Plan-Length decision problem) is a NEXPTIME-complete
task. Deciding if a plan exists at all (the Plan-Existence decision problem) is
an EXPSPACE-complete task (Ghallab et al., 2004, Table 3.2).

That does not mean domain knowledge makes Transport easy, as is evident
from the very thorough analysis by Helmert (2001a,b). We will categorize our
problems using Helmert’s notation to be able to apply their results to our domain.
A Transport task is a 9-tuple (V, E, M, P, fuel0, l0, lG, cap, road), where:

• (V, E) is the road graph;

• M is a finite set of vehicles (mobiles);

• P is a finite set of packages (portables);

• fuel0 : V → N0 is the fuel function;

• l0 : (M ∪ P )→ V is the initial location function;

• lG : P → V is the goal location function;

• cap : M → N is the capacity function; and

• road : M → 2E is the movement constraints function.

V , M , and P are pairwise disjoint. No Transport domain variants assume move-
ment constraints, therefore, road is a constant function ∀m ∈M : road(m) = E.

A simplified notation is also introduced in Helmert (2001b) for special cases
of Transport tasks. For i, j ∈ {1,∞, ∗}, k ∈ {1, +, ∗} a Transporti,j,k task
is defined as a general Transport task (defined above) that satisfies:

• if i = 1, then ∀m ∈M : cap(m) = 1 (vehicles can only carry one package);

• if i =∞, then ∀m ∈M : cap(m) = |P | (vehicles have unlimited capacity);

• if j = 1, then ∀v ∈ V : fuel0(v) = 1 (one fuel unit per location);

• if j =∞, then ∀v ∈ V : fuel0(v) =∞ (unlimited fuel per location);

• if k = +, then ∀m ∈M : road(m) = E (no movement restrictions); and

• if k = 1, then M = {m} & road(m) = E (single vehicle, no restrictions).
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The ∗ value for i, j or k signifies no restriction on that property. Note that
Transport refers to the notation from Helmert (2001b), while Transport refers
to our studied domain.

Using this notation, the sequential Transport domain could be thought of as a
Transportc,∞,+ task, where c ∈ N (equivalent to Transport1,∞,+). Similarly,
the temporal variant represents a Transportc,f,+ task, for c, f ∈ N (equivalent
to Transport1,1,+).

For sequential and temporal Transport without fuel, the Plan-Existence
problem reduces to verifying reachability of each package by at least one vehicle
and the reachability of target locations from the starting locations of all packages,
which we can do in polynomial time, as noted in Helmert (2001a, Theorem 8).
With fuel, there is no straightforward way of determining if a plan exists and this
problem is NP-complete, which is proven in Helmert (2001a, Theorem 9 and 10).

Even though fuel constraints are modeled differently than in Transport (con-
straints per location versus per vehicle), the proof of NP-completeness of Plan-
Existence for Transport∞,1,1 present in Helmert (2001b, Theorem 3.9) can be
trivially edited to prove the NP-completeness of Plan-Existence for temporal
Transport. Instead of adding fuel conditions to the entrance and exit nodes of a
location, we simply add it to road between them. The rest of the proof holds as
was presented originally.

Similarly, the Plan-Length problem is NP-complete for all mentioned vari-
ants of Transport (Helmert, 2001b, Section 3.6). The fact that all the mentioned
proofs work for temporal variants is explained in Helmert (2001b, Section 3.5).
All of these results make clear that looking for an explicit planning algorithm
is infeasible, despite the advantage we gain by only focusing on one planning
domain.

3.2 Domain information
There are several interesting properties and invariants that hold in both sequential
and temporal Transport, which might prove useful for designing planners:

1. Do not pick up delivered packages: The simplest and trivially correct
decision is to never touch packages that are already at their destinations,
since there is nothing we can do using those packages that would result in
a plan with a lower total cost.

2. Drop when at the destination: Likewise, it is always correct for a vehicle
containing a package with a destination equal to the vehicle’s location to
do a drop action immediately.

3. Do not drop and pick up: It never makes sense to plan a drop and
pick-up action of the same package by the same vehicle in succession. We
will only get to the same state by using a longer plan. This rule also applies
if an action of a different vehicle gets between the two successive actions,
even if it does an action with the dropped package. It is important to note
that this is a symmetric property: picking up and then dropping equally
results in a worse plan.
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(a) Do not drop a package where we picked it up: A generalization
of the previous rule is that vehicles should never drop a package at the
location they last picked it up, independent of the actions they took
between the relevant pick-up and drop. This rule is also symmetric.

(b) Never drop after picking up at a location: While the order of
successive pick-up and drop actions does not influence the optimality
of a plan, it makes the search space smaller and the implementation
of these rules simpler, without loss of generality.

4. Do not drive suboptimally: If a vehicle does a series of drive actions
from location A to B without “touching” packages or refueling at any of the
locations it visits, it has to follow the shortest possible path from A to B. If
it does not, the induced plan can be made less costly or shorter by swapping
the actual drive actions for precalculated optimal drive actions along the
shortest path. Do note, that it is not important for the application of this
rule whether actions are in direct succession (in a sequential plan) or not.

(a) Do not drive in cycles: A special but important case of the previous
rule is that vehicles should not drive in cycles.

5. Do not forward packages using other vehicles: Let p be a package
of size |p| located at A. Let v be a vehicle which drove through location A
to location B ̸= A and picked up p at B, without having less than |p| free
space in any intermediate state between leaving A and picking up p. If this
sequence of events occurs, the plan is suboptimal in a sequential setting,
because v could have picked up p when driving through A, and the total
plan cost would have gone down by at least 2. The reason is that a different
vehicle had to pick up, drive, and drop package p at B. While we cannot
say if the drive actions themselves were redundant, the pick-up and drop
actions definitely were. By removing them, we save 2 on the total cost.
In a temporal domain without fuel, assuming that vehicles only drive along
the shortest routes, the plan does not necessarily have to be suboptimal,
but it is of equal length or longer: due to concurrent actions, the vehicles
could have driven simultaneously. In a few cases, the other vehicle could
have dropped p at B before v wants to pick it up, which means that the
total makespan of the partial plan did not become longer, but stayed the
same. The plan could not have become shorter, because v does not have
any time in this scenario when it is available to do another action.
In a temporal domain with fuel, it is not safe to say whether such a scenario
hurts the plan duration. If there is a petrol station at B and v wants to
refuel there, the other vehicle could have enabled the parallelization of the
refuel and pick-up actions, therefore shaving off 1 time unit in total.
However, if there is no petrol station at B, this situation reduces to the
no-fuel variant. Given the relative rarity of petrol stations, this will reduce
the search space somewhat.

Another insight can only be applied to the sequential variant of Transport:

1. Drop from an active vehicle only: Without loss of generality, we can
prune all plans where a drop action of a vehicle happens right after an
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action of a different vehicle. It is trivial to see that if we had a plan where
a drop action occurs after an action of a different vehicle, we can swap
that action with the drop action without changing the total plan cost or
changing the validity of the plan.
Doing this repeatedly will yield an equivalent plan, in which the drop action
occurs right after a different action of the same vehicle and the plan is of
the same total cost and validity as the original plan. Repeating this process
for each drop action will yield a plan equivalent to the original plan, which
additionally satisfies this rule.

Finally, these are the properties that only meaningfully apply to the temporal
variant:

1. Refueling and dropping/picking up can occur at the same time: A
plan in which a vehicle starts to pick up a package at the same location it
just refueled at is suboptimal, if there was a time point during the refuel
action when the vehicle was not dropping or picking up packages and the
package was already co-located with the vehicle at that time.

2. No fuel left means refueling or ignoring the vehicle: If a vehicle
is stuck with no fuel left, or with less fuel than is required for any valid
drive action, the correct thing to do is to either refuel or drop all packages
and ignore the vehicle in further planning. Unfortunately, we cannot say
anything about the (non-)optimality of a plan where this occurs.

3.3 Datasets & problem instances
For evaluation and comparison with other planners, we have acquired several
problem datasets from previous runs of the IPC. Table 3.1 provides an overview
of the individual datasets, their associated IPC competition, the track at the
competition and the domain variant the problems are modeled in.

Short descriptions of the various tracks and subtracks can be found in the
rule pages of IPC-6,1 IPC-7,2 and IPC-8.3 We have decided to split our further
research based on the tracks at the IPC: we will focus on constructing Transport-
specific planners for the seq-sat-6, seq-sat-7, seq-sat-8, and tempo-sat-6 datasets,
corresponding to the sequential and temporal variants of Transport.

The datasets labeled seq-opt correspond to sequential optimality planning
tracks, where only optimal plans for problems are accepted as correct. Datasets
labeled seq-mco are used in multi-core satisficing tracks (multi-threaded planners)
and seq-agl are used in agile tracks (minimize the CPU time required to find a
satisficing plan). The netben-opt-6 dataset contains Net Benefit problems, where
the aim is to compensate between achieving soft goals and minimizing the total
cost. Soft goals are goals that do not necessarily have to be satisfied in a goal
state, but it is usually better for the total score if they are. Each problem usually
specifies a metric used for calculation of the score. We will not focus on these
problems in this work.

1http://icaps-conference.org/ipc2008/deterministic/CompetitionRules.html
2http://www.plg.inf.uc3m.es/ipc2011-deterministic/CompetitionRules.html
3https://helios.hud.ac.uk/scommv/IPC-14/rules.html
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Dataset Competition IPC Track Formulation

netben-opt-6

IPC-6

Net-benefit: optimization Numeric
seq-opt-6 Sequential: optimization STRIPS
seq-sat-6 Sequential: satisficing STRIPS
tempo-sat-6 Temporal: satisficing Temporal
seq-mco-7

IPC-7
Sequential: multi-core

STRIPSseq-opt-7 Sequential: optimization
seq-sat-7 Sequential: satisficing
seq-agl-8

IPC-8

Sequential: agile

STRIPSseq-mco-8 Sequential: multi-core
seq-opt-8 Sequential: optimization
seq-sat-8 Sequential: satisficing

Table 3.1: Transport datasets from the 2008, 2011, and 2014 IPCs. All for-
mulations assume capacitated vehicles. Numeric and temporal formulations also
contain fuel demands and capacities. The temporal formulation additionally adds
concurrent actions and a notion of time. More information can be found in Sec-
tion 2.1.

In addition to the domain definition, we need to take a look at the individual
problems to fully utilize our knowledge advantage. Both the seq-sat-6 and tempo-
sat-6 contain 30 problems, while seq-sat-7 and seq-sat-8 only contain 20 problems
each. Table 3.2 shows the dimensions of each problem instance for each mentioned
dataset.

While the planners (including our domain-specific ones) do not know this,
each problem was constructed with a scenario in mind. Locations in problems
are not just placed randomly, but usually belong to cities. Inside a city, the road
network tends to be dense and road lengths small, while roads connecting cities
are rare and usually significantly longer.

All sequential problem instances in seq-sat datasets have symmetric roads
and road lengths and can, therefore, be simplified by assuming the use of an
undirected graph. All packages are always positioned at locations in the initial
state, not in vehicles (in all domain variants).

The temporal problems in tempo-sat-6 do not have the same properties; the
problems 1–20 have symmetric roads and lengths, but the 21–30 problems only
have symmetric roads, not lengths in general. The same applies to fuel demands
of roads. Additionally, these problems have vehicle target locations, which means
that not only packages, but also vehicles will need to be positioned at specific
locations after package delivery finishes. We can interpret this goal in a similar
way as in a VRP, where a vehicle target location is thought to be a truck depot or
hub. A visualization of such a problem can be seen in Figure 3.1. No sequential
problem has this requirement, even though the domain formulation allows it.

Given a specific Transport problem, we can calculate the size of the set of
states S. For sequential Transport, the state space size can be estimated as:

lv · (l + v)p,

where l is the number of locations, v the number of vehicles, and p the number
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# Vehicl
es

Pack
ages

Citi
es

Loca
tio

ns

Roads

Sta
tes

1 2 2 1 5 12 103

2 2 4 1 10 28 106

3 3 6 1 15 66 1011

4 3 8 1 20 70 1014

5 3 10 1 25 92 1018

6 4 12 1 30 138 1024

7 4 14 1 35 136 1028

8 4 16 1 40 164 1032

9 4 18 1 45 170 1037

10 4 20 1 50 210 1041

11 2 2 2 6 12 103

12 2 4 2 12 32 106

13 3 6 2 18 58 1011

14 3 8 2 24 88 1015

15 3 10 2 30 132 1019

16 4 12 2 36 168 1025

17 4 14 2 42 152 1029

18 4 16 2 48 192 1034

19 4 18 2 54 220 1038

20 4 20 2 60 256 1043

21 2 2 3 6 12 103

22 2 4 3 12 30 106

23 3 6 3 18 64 1011

24 3 8 3 24 74 1015

25 3 10 3 30 114 1019

26 4 12 3 36 166 1025

27 4 14 3 42 170 1029

28 4 16 3 48 248 1034

29 4 18 3 54 234 1038

30 4 20 3 60 226 1043

(a) Problem dimensions of seq-sat-6.

# Vehicl
es

Pack
ages

Citi
es

Loca
tio

ns

Roads

Petro
l

Sta
tes

1 2 2 1 5 12 1 108

2 2 4 1 10 36 1 1011

3 3 6 1 15 64 1 1019

4 3 8 1 20 70 1 1022

5 3 10 1 25 94 1 1026

6 4 12 1 30 132 1 1035

7 4 14 1 35 158 1 1039

8 4 16 1 40 190 1 1043

9 4 18 1 45 210 1 1048

10 4 20 1 50 254 1 1052

11 2 2 2 6 12 2 108

12 2 4 2 10 32 2 1011

13 3 6 2 16 50 2 1019

14 3 8 2 20 74 2 1022

15 3 10 2 26 108 2 1027

16 4 12 2 30 152 2 1035

17 4 14 2 36 168 2 1039

18 4 16 2 40 142 2 1043

19 4 18 2 46 218 2 1048

20 4 20 2 50 240 2 1052

21 5 2 3 6 12 3 1018

22 5 4 3 9 18 3 1021

23 6 6 4 12 24 4 1028

24 7 8 4 16 32 4 1036

25 8 10 5 20 40 5 1044

26 8 12 5 25 60 5 1049

27 10 14 6 30 72 6 1062

28 10 16 6 36 84 6 1067

29 11 18 7 42 98 7 1076

30 11 20 7 49 112 7 1081

(b) Problem dimensions of tempo-sat-6.

# Vehicl
es

Pack
ages

Citi
es

Loca
tio

ns

Roads

Sta
tes

1 4 16 1 40 82 1032

2 4 18 1 45 85 1037

3 4 18 3 54 117 1038

4 4 12 2 36 84 1025

5 4 14 2 42 76 1029

6 4 16 2 48 96 1034

7 4 18 2 54 110 1038

8 4 20 1 50 105 1041

9 4 20 2 60 128 1043

10 4 20 3 60 113 1043

11 4 22 1 50 92 1044

12 4 20 1 53 101 1042

13 4 22 1 53 101 1045

14 4 22 2 120 229 1054

15 4 20 2 124 239 1050

16 4 22 2 124 239 1054

17 4 22 3 180 347 1058

18 4 20 3 189 361 1054

19 4 22 3 189 361 1059

20 4 22 3 198 392 1059

(c) Problem dimensions of seq-sat-7.

# Vehicl
es

Pack
ages

Citi
es

Loca
tio

ns

Roads

Sta
tes

1 4 25 1 50 200 1050

2 4 30 1 53 212 1059

3 4 25 1 53 212 1050

4 4 25 2 136 512 1062

5 4 30 2 134 536 1072

6 4 25 2 136 512 1062

7 4 25 3 204 764 1067

8 4 30 3 201 796 1078

9 4 25 3 204 764 1067

10 4 25 3 198 794 1066

11 5 25 1 60 238 1054

12 4 30 1 63 254 1061

13 3 25 1 63 254 1050

14 5 25 2 120 454 1062

15 4 30 2 124 500 1071

16 3 25 2 124 500 1058

17 5 25 3 180 696 1067

18 4 30 3 189 764 1077

19 3 25 3 189 764 1063

20 5 25 3 198 794 1069

(d) Problem dimensions of seq-sat-8.

Table 3.2: Problem dimensions of selected Transport IPC datasets. The “states”
value is a state space size estimate as discussed in Section 3.3 (in temporal do-
mains calculated with fmax = 100 and the GCD of fuel-demands equal to 1).
Bold problem instances correspond to Figure 2.1 and Figure 3.1, respectively.
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Figure 3.1: Road network visualization of the p30 problem from the tempo-sat
track of IPC 2008. Red dots represent locations (graph nodes), roads (graph
edges) are represented by black arrows, vehicles are plotted as blue squares, and
packages as purple squares. Darker red dots represent locations with petrol sta-
tions. In this specific problem, the circle of darker nodes in the center represents
truck hubs and each of the attached subgraphs are individual cities.
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Dataset Problems
Sym. Sym. Vehicle

≈ # statesroad fuel fuel
lengths demands locations

seq-sat-6 01–30 Yes N/A No 103 → 1043

seq-sat-7 01–30 Yes N/A No 1025 → 1059

seq-sat-8 01–30 Yes N/A No 1050 → 1078

tempo-sat-6 01–20 Yes Yes No 108 → 1052

21–30 No No Yes 1018 → 1081

Table 3.3: Summary of problem instance properties in IPC Transport datasets.
State space size estimates in temporal domains are calculated using fmax = 100
and the GCD of fuel-demands equal to 1.

of packages. The formula represents the number of choices for the location of
vehicles, combined with the number of choices for the location of packages (these
include being loaded onto a vehicle). We have eliminated invalid states arising
from inconsistent in(p) and at(p) state variable values, but some invalid states
are still left in the state size estimate (for example states, where vehicles are
loaded beyond maximum capacity). We did not include a notion of capacity in
this estimate because it can be computed from the locations of packages.

For temporal Transport, the problem state space size estimate is more com-
plicated, due to actions being parallel. A reasonable estimate could be:

(l + r)v ·
(

fmax

GCD{fuel-demand(l1, l2)|(l1, l2) ∈ R}

)v

· (l + v)p,

where R represents the set of roads, r = |R| is the number of roads, GCD is
the greatest common divisor function, and fmax is the maximum fuel capacity
for vehicles. The fmax value presents a simplification, where all vehicles have an
equal maximum fuel capacity. The formula expresses the choice of positions of
vehicles (vehicles can now be in the middle of a drive action), the choice of the
current fuel capacity of vehicles (cannot be simply calculated from the other state
variables, only from all previous actions), and the choice of location for packages.

We can see that problems vary not only in size but also in what features they
include and what assumptions they make. A summary of the acquired dataset-
specific insights is available in Table 3.3.
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4. Sequential Transport planning
In this chapter, we describe the planning approaches we selected, implemented,
and tested for the STRIPS variant of Transport. Throughout this process, we
will leverage the acquired Transport domain knowledge as much as possible.

4.1 State-space forward planning
One of the most straightforward approaches to automated planning is forward
search (Ghallab et al., 2004, Section 4.2) in state space (Figure 4.1). Although
the algorithm is defined on a classical representation, it can be used on any
planning problem, where we can:

• determine whether a state is a goal state or not;

• iterate over all actions applicable to a state; and

• compute a successor state by applying an action to the current state.

Forward search, despite its simplicity, is one of the most frequently used ap-
proaches for domain-independent planners. There are two key steps of the al-
gorithm, which cause the most problems in practice: representing the applicable
actions (step 6) and choosing the next action to apply (step 8).

Representing state transitions in step 6 is a technical problem of representing
successor states in state space search (Russell and Norvig, 1995, Section 3.2). Due
to limited memory, applicable actions are grounded from operators on demand,
as are the corresponding successor states (Russell and Norvig, 1995, Section 3.4).

The forward search algorithm, in its specified form, is nondeterministic. If we
knew which action to choose in step 8, we would know how to solve the planning
problem. Since we generally do not know which action (state transition) to choose
in a given state, the choice is usually delegated to a suitable search algorithm.
When forward search is implemented using such a search algorithm, the result is
a deterministic forward search algorithm.

4.1.1 Deterministic search algorithms
State space search algorithms are a heavily studied area of computer science
and any reasonable search algorithm applied to forward search will yield results.
Examples of such algorithms are Breadth-First Search (BFS), Depth-First Search
(DFS), and many more (Russell and Norvig, 1995, Section 3.5). The choice of a
search algorithm greatly influences the quality of resulting plans when applied to
forward search.

As sizes of planning problems grow, choosing a search algorithm is even more
crucial. Several well-performing algorithms on small problems (like BFS) exceed
reasonable run times and become unusable for practical application on larger
problems. An important and practically useful search algorithm withstanding
larger problem sizes is the A∗ algorithm (Figure 4.2) introduced in Hart et al.
(1968).
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Algorithm Forward Search
Input: a planning problem in a classical representation P = (S, O, γ, s0, g)
Output: a plan π

1: function Forward-Search(P)
2: s← s0
3: π ← empty plan
4: loop
5: if s satisfies g then return π

6: As ← {a | o ∈ O, a is a ground instance of o & precond(a) is true in s}
7: if As = ∅ then return failure
8: (nondeterministically) choose an action a ∈ As

9: s← γ(s, a)
10: π ← append a to π

Figure 4.1: A forward search planning algorithm for Transport. Adapted from
Ghallab et al. (2004, Figure 4.1).

A∗ has many important properties. We pinpoint one important to us, namely
its admissibility. A search algorithm is admissible if it is guaranteed to find an
optimal path from a state s to a goal state sg for any state space (Hart et al.,
1968). A∗ is admissible and optimal given an admissible heuristic.

An admissible heuristic never overestimates the true value it is approximating.
During planning in state space, when examining a state s, we want to estimate
the total cost of the best plan that gets us to a goal state from state s. In other
words, because we are trying to minimize the total cost, a planning heuristic
h : S → N0 is admissible if and only if:

∀s ∈ S : h(s) ≤ h∗(s),

where h∗ is the true total cost (i.e. the optimal heuristic). A similar definition is
applicable for minimizing makespan in the temporal variant.

Furthermore, some heuristics have the property of being consistent. A heuris-
tic h is consistent if and only if:

∀s ∈ S : h(s) ≤ cost(a) + h(sn),

where a ∈ A : γ(s, a) = sn, and for all goal states sg, it holds that h(sg) = 0.
Consistent heuristics are sometimes called monotonic, because their value does
not increase along the best path to a goal state. Additionally, it can be proved that
consistent heuristics are always admissible (Russell and Norvig, 1995, Section 4.1).

A slight modification of A∗, called Weighted A∗ (Pohl, 1970), tends to yield
good quality plans in a shorter amount of time, at the expense of sacrificing
admissibility. The only difference when compared to A∗ is that the heuristic h(x)
is substituted for hw(x) = w · h(x), where w ∈ N0 is a weight constant. Choosing
a weight greater than 1 makes the heuristic inadmissible, but guides the search
towards a goal state faster.
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Algorithm Forward Search with A∗

Input: a classical planning problem P = (S, O, γ, s0, g), a heuristic h
Output: a plan π

1: function Collect-Plan(s, π)
2: π′ ← empty list
3: while s ̸= ∅ do
4: (s′, a)← π[s]
5: π′ ← prepend a to π′

6: s← s′

7: return π′

8: function Forward-Search-Astar(P)
9: π ← empty map, f [∗]←∞, g[∗]←∞, o← {s0}, c← ∅

10: π[s0]← ∅, g[s0]← 0, f [s0]← h(s0)
11: while o ̸= ∅ do
12: s← argmins′∈of [s′], o← o \ {s}, c← c ∪ {s}
13: if s satisfies g then return Collect-Plan(s, π)
14: for all actions a ∈ Generate-Actions(s, π) do
15: sn ← γ(s, a) ▷ Neighbor state
16: if sn /∈ c then ▷ Not visited yet
17: if sn /∈ o then o← o ∪ {sn} ▷ Discovered a new state
18: if g[s] + cost(a) < g[sn] then ▷ Found a better path
19: π[sn]← (s, a)
20: g[sn]← g[s] + cost(a)
21: f [sn]← g[sn] + h(sn)

return failure
Figure 4.2: A forward search planning algorithm using A∗. Generate-Actions is
a function that produces actions applicable to the state s. The notation x[∗]← y
represents initialization of all values of the map x to y.

4.1.2 Heuristics for forward search in Transport
When designing a heuristic, we want to provide an estimate of the total plan cost
or makespan that is as precise as possible, which will help guide the search to a
goal state as quickly as possible.

We will now describe several heuristics for sequential Transport using the
state-variable representation. In the following, the value of the target(p) function
represents the target location of a package p in the set of packages P .

Trivially admissible Transport heuristic

The simplest domain-specific heuristic that is applicable to all variants of Trans-
port, apart from the zero heuristic h0 ≡ 0, is one that counts the minimum
number of pick-up and drop actions necessary to reach a goal state.

To obtain the correct count, we simply add 1 for each package that is not
yet at its destination (it will need to be dropped there), and another 1 for each
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package that is, additionally, not in a vehicle (it will need to be picked up):

h′
0(s) =

∑
p∈P

at(p)̸=target(p)

1 +
∑
p∈P

at(p) ̸=target(p)
at(p)̸=nil

1.

The heuristic h′
0 is admissible, but it is practically unusable, as it very poorly

approximates the cost of the optimal remaining actions to a goal state — recall
that costs of drive actions are generally much higher than the costs of pick-up
and drop actions.

Package distance heuristic

In transport-strips, the only thing we want is to deliver packages to their
destinations. Therefore, a straightforward heuristic is one that calculates the
length of a shortest path of each package to its destination and sums the lengths
for all packages. To make the heuristic more precise, we can add the value of h′

0
to it, as the pick-up and drop actions also have to occur in the optimal plan:

h1(s) = h′
0(s) +

∑
p∈P

spd(location(p), target(p)),

where the location : P → L function, with values in the set of all locations L, is
defined as:

location(p) =

⎧⎨⎩at(p), if at(p) ̸= nil,
at(in(p)), else.

The location of a package is, therefore, defined as the location it is at, or, if it is
loaded in a vehicle, the location of the vehicle. The function spd : L × L → N0
represents the shortest path distance between the two locations.

This heuristic is definitely not optimal, meaning that there are states, where
we will need to add actions to reach a goal state with a higher total cost than
the value of the heuristic in that state.

However, it is important to note, the heuristic is not even admissible, so its
value might sometimes overestimate the total cost needed. To see why, let us
consider a network with just two locations A and B. A vehicle of capacity 2 and
two packages are located at A and both packages want to be transported to B.
The road between A and B is symmetric and has length of a 1. It is trivial to see
that the optimal plan consists of two pick-up actions, followed by a drive and
two drop actions. This plan has a total cost of 2 + 1 + 2 = 5, but the heuristic
would estimate that we need actions that cost 6.

Minimum spanning tree marking heuristic

A different extension of the h′
0 heuristic is the heuristic h2, based on finding the

shortest paths on a minimum spanning tree (MST). Using an MST calculated
by the algorithm presented in Kruskal (1956), we can solve one of the largest
problems with h1, namely that we count an excessive amount of drive actions
for packages to their targets.

For each package p, the h2 heuristic calculates shortest path distances to the
package’s target, but only using roads in the MST. Also, we do not calculate any
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Figure 4.3: Visualization of the counterexample road network for admissibility of
the heuristic h2 for n = 7. Red roads represent the MST, roads marked with a
cross were marked by h2.

road twice — instead of adding its length directly to the total value, we mark
it. After marking such roads for each package, we sum the lengths of all marked
roads. In the same way as in h1, we add the value of h′

0 to the final sum.
Do note that this heuristic is yet again inadmissible: let the road network be

a circle of n locations with roads of lengths 1, 2, . . . , n assigned clockwise. An
MST on this network consists of all roads except the road with length n, let us
denote the road r = (A, B). Now, assume there is a package p located at A, with
a target location of B, and a vehicle v, also located at A. The optimal plan is,
obviously, to pick up the package at A, drive along road r to B, and drop the
package there. The plan has a cost of n + 2. The h2 heuristic will, however,
mark all roads except r, because that is the only path from A to B in the MST.
Therefore, in the initial state, the estimate given by h2 will be:

h2(s0) = 2 +
n−1∑
i=1

i = n2

2 −
n

2 + 2,

which is evidently greater than n + 2 for n > 3. Figure 4.3 shows an example of
such a road network for n = 7.

Package and vehicle distance heuristic

As an extension of the package distance heuristic, we will also add the distance
of the nearest vehicle for each package:

h3(s) = h1(s) +
∑
p∈P

min
v∈V

spd(location(p), at(v)),

where V is the set of all vehicles. As follows from the inadmissibility of h1, h3 is
also inadmissible and non-optimal.

Package or vehicle distance heuristic

A variation on the package and distance heuristic is one that does not sum the
shortest path distances, but instead takes the minimum. Specifically, for each
package, the minimum is taken from the distance to its target location, distance
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to the nearest vehicle, and the distance to the nearest package:

h4(s) = h′
0(s) +

∑
p∈P

min{spd(location(p), target(p)), min
v∈V

spd(location(p), at(v)),

min
p′∈P
p′ ̸=p

spd(location(p), location(p′))}.

We will now show the admissibility of this heuristic.

Theorem 1. The heuristic h4 is admissible for sequential Transport problems.

Proof. Let s be a state such that h4(s) > h∗(s), where h∗ is a function of the
real distance to the nearest goal state. State s is not a goal state, because for all
goal states s′ it holds that h4(s′) = 0 = h∗(s′), due to all packages being at their
target locations. Let sg be the nearest goal state to s.

Because h4(s) > h∗(s), there exists a finite plan π from the initial state s that
ends in sg, such that the total cost of π is equal to h∗(s). Let h

(p)
4 (s) denote the

value of a package’s term in the sum of h4(s), ignoring the contribution of h′
0. Let

p ∈ P be any package that is not yet at its destination, not loaded in a vehicle,
and not at a location with any other packages (all of those have h

(p)
4 (s) = 0).

In the plan π, p had to be delivered. That means a vehicle (possibly more)
had to arrive at the package’s location, pick it up, drive it somewhere else and
drop it, possibly several times. However, any vehicle could not have arrived at
p’s current location from a location that is closer than:

min{min
v∈V

spd(location(p), at(v)), min
p′∈P
p′ ̸=p

spd(location(p), location(p′))} ≤ h
(p)
4 (s),

and at least one vehicle had to arrive at the package’s location. The pick-up
and drop actions for each package have to be planned in π as well, at least in the
corresponding counts that h′

0 adds.
This means, that π had to have actions that correspond at least to the costs

of:
h′

0(s) +
∑
p∈P

h
(p)
4 (s) = h4(s),

which implies h4(s) ≤ cost(π) = h∗(s), and that is a contradiction.

Despite its admissibility, the h4 heuristic is not consistent. Let us assume the
following road network (Figure 4.4a):

{{A, B, 1}, {B, C, 2}, {B, D, 2}},

where at(v) = A, at(p1) = C, and at(p2) = D hold in the initial state s0. The
target of p1 is D and the target of p2 is C. The value:

h4(s0) = 3 + 3 + 4 = 10

is greater than the cost of the applicable drive action for vehicle v from A to B
added to the heuristic value in the updated state:

cost(a) + h4(s′) = 1 + (2 + 2 + 4) = 9.

The heuristic is also not optimal, as is evident from the same example situation
(for s0, the optimal plan is of length 13).
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Figure 4.4: Visualization of the counterexample road networks for consistency of
heuristics h4 and h5.

General marking heuristic

The general marking heuristic h5 is a generalization of the MST marking heuristic
h2. We calculate h5 in the exact same way by marking roads on shortest paths,
but we do not use the calculated MST — instead, the whole road network is
used. Essentially, this heuristic behaves like the the package or vehicle distance
heuristic h4, without adding any road’s length to the sum more than once.

When calculating the value of h5, we consider the shortest path from each
package to the nearest vehicle, package, or target location. Roads on the shortest
path from those are marked and the weights of marked roads are summed after we
mark the shortest path for each package. Shortest path ties are broken arbitrarily.
Do note that if a package is loaded in a vehicle, no roads are marked for it.

The described heuristic is not optimal, but it is admissible. Both properties
hold because ∀s ∈ S : h5(s) ≤ h4(s) holds and they hold for h4.

Even though h5 is consistent in far more situations (combinations of states
and applicable actions) than h4, it is still not consistent in general. Assume the
following road network (Figure 4.4b):

{{A, B, 1}, {A, C, 1}, {A, D, 1}, {B, C, 2}, {B, E, 10}, {C, D, 2}, {D, E, 10}},

where at(v) = C, at(p1) = B, and at(p2) = D hold in the initial state s0. The
target of both p1 and p2 is E. If the heuristic selects the red roads for s0, the
value:

h5(s0) = 2 + 2 + 4 = 8

is greater than the cost of the applicable drive action for vehicle v from C to
A added to the heuristic value in the updated state (assuming selection of blue
roads):

cost(a) + h5(s′) = 1 + (1 + 1 + 4) = 7.

Note that the h5 heuristic could have likewise selected the blue roads along with
the {A, C, 1} road, which would have resulted in h5(s0) = 7, and this case would
not be a counterexample. This points to the possibility that the h5 heuristic will
work reasonably “consistently” in practice.
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Summary

In our tests, we found that the heuristics h0, h′
0, h1, and h2 were too simple for

practical usage. The h3 heuristic, while having no significant theoretical proper-
ties performs surprisingly well in practice. The h4 heuristic on the other hand,
while being admissible, does not perform well empirically. Due to its closeness
to consistency, the h5 heuristic has the best properties out of all the discussed
heuristics and also performs well in practice. We will include planners utilizing
the h3 and h5 heuristics in our final evaluation (Chapter 6).

4.1.3 Sequential Forward A*
Sequential Forward A∗ (SFA) is a planner for sequential Transport based on for-
ward search using A∗ (Figure 4.2). It utilizes most of the domain knowledge
described in Section 3.2 and 3.3 to prune the search space as much as possible
without sacrificing admissibility.

However, domain knowledge alone does not prune away enough search space
to generate plans efficiently. With the addition of heuristics from Section 4.1.2,
implementations of the planner become reasonably useful on practical problems,
as will be demonstrated later during experimental evaluation.

To limit memory usage, we add an if statement to line 17 of the algorithm
(Figure 4.2), which checks if the open set is larger than a given hyperparameter.
If it is, it removes the state with the largest f value in the open set, making
room for the addition of the new state. In our experiments, the hyperparameter
is always set to 800 000.

A variant of SFA, Weighted Sequential Forward A∗ (WSFA) swaps A∗ search
for Weighted A∗ in the SFA planner.

4.1.4 Meta-heuristically weighted SFA*
Meta-heuristically weighted SFA∗ (MSFA) is a meta-planner built on top of a
WSFA planner with a given heuristic.

Given two hyperparameters α ∈ [0, 1] and w0 ∈ [1,∞), it runs the WSFA
planner with the heuristic weight w ← w0, waits for the planner to find a plan, and
then (exponentially) decays the weight of the heuristic function with a minimum
at 1:

w ← max(1, ⌊α · w⌋).

Do note that this is followed up by a complete restart of search in the internal
WSFA planner. If only a recalculation of values in the f map of forward search
with A∗ was done, all successive weight runs would almost immediately return,
because we are in the vicinity of a goal state, but not necessarily the nearest one
to the initial state. In some sense, this simulates a quick DFS run followed up by
local search around the path found by DFS. Generally, better results are obtained
by reexploring the state space from the initial state with an updated weight.

Even though this meta-planning approach breaks admissibility guarantees, it
works very well on practical problems, even the larger ones.

38



Algorithm Randomized Restart planning
Input: a Transport problem in a classical representation P = (S, O, γ, s0, g)
Output: a plan π

1: function Randomized-Restart(P)
2: π ← empty plan, Π←∞
3: while cancel not requested do ▷ Canceled by an external request
4: s← s0, π′ ← empty plan
5: while s doesn’t satisfy g & score(π′) < Π do
6: A← Generate-Drive-Sequence(s)
7: for all action a ∈ A do ▷ Apply all actions to the state
8: s← γ(s, a)
9: if s = ∅ then break ▷ At least one a ∈ A was not applicable

10: π′ ← append all a ∈ A to π′

11: if s satisfies g & score(π′) < Π then
12: π ← π′, Π← score(π′) ▷ Update the best plan
13: return π

Figure 4.5: A Randomized Restart planning algorithm. The Generate-Drive-
Sequence function generates a partial plan beginning in state s. The exact
definition of the function depends on the specific algorithm variant as described
in Section 4.2.1.

4.2 Ad-hoc planning
An approach that domain-independent planners by definition cannot utilize is ad-
hoc planning. We propose several ad-hoc planners that generate decent quality
plans very fast, although they are usually suboptimal. This becomes an advantage
mainly when dealing with very large problems or time-constrained planning, like
in the agile track of IPC.

4.2.1 Randomized Restart Planning
We will now describe a family of planners which we will refer to as Randomized
Restart planners. Each of these planners essentially performs the same algorithm
(Figure 4.5), with minor tweaks. The motivation behind the algorithm is that
the “hardest” part of Transport planning is choosing where to drive with what
vehicle.

The algorithm essentially does domain-dependent plan space planning by it-
eratively adding sequences of drive actions intertwined with pick-up and drop
actions until all packages are delivered. To do all of this at speed, the vehicle used
for the given sequence is usually chosen randomly, as are the packages that are
picked up and dropped along the driving path. The biggest advantage, however,
is gained by precomputing a matrix of shortest paths and always using those to
drive to the selected locations.

Our randomized restart planners will generate many suboptimal plans, but
by always keeping a copy of the so far best found plan, we can prune away the
current partial plan if it becomes worse than the best plan after adding a sequence.
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Afterwards, we simply restart from the initial state and iteratively generate a new
candidate plan. We utilize domain knowledge in all the planners, for example by
not picking up packages that are at their destination, and using most of the other
insights discussed in Section 3.2.

Randomized Restart From Location Planner

In each iteration of the aforementioned algorithm, the Randomized Restart From
Location planner (RRFL) randomly chooses a vehicle and a location. It adds
drive actions along the shortest path to that location and greedily picks up as
many packages as its capacity allows. It then calculates the optimal path through
all the picked up package target locations, by trying the shortest paths through
all possible permutations of the locations. Finally, it adds the appropriate drive
and drop actions.

Randomized Restart On Path Planner

The Randomized Restart On Path planner (RROP), randomly chooses a vehicle
and a package that fits into the vehicle. It then calculates the shortest path
from the vehicle to the package and the shortest path from the package to its
target location. Afterwards, it finds all packages that have current and target
locations on the path, taking into account the direction of driving. It then tries
all combinations of those packages that do not make the vehicle become over
capacitated over the whole course of the path, in order to find the combination
that maximizes the minimum free capacity over the course of the path. If there
are several such combinations, it minimizes the maximum package drop location
index in the path. If there are still several combinations, it chooses one arbitrarily.
Finally, it adds the appropriate drive and drop actions.

Randomized Restart On Path Nearby Planner

The Randomized Restart On Path Nearby planner (RROPN) is a slight mod-
ification of RROP. It first chooses a package randomly and then, based on a
probability ε ∈ [0, 1], either chooses a random vehicle that the package fits into,
or the nearest such vehicle. The rest of the algorithm is identical to RROP. The
probability ε is a hyperparameter, which in our experiments is fixed to 0.2, which
means that the probability of selecting the nearest vehicle is 80%.

Randomized Restart Around Path Nearby Planner

Another randomized restart planner that is built on top of RROPN, is the Ran-
domized Restart Around Path Nearby planner (RRAPN). It uses the same vehicle
and package selection, but it changes the way packages on the path are chosen
to be loaded onto the vehicle.

We still load as many packages that are completely on the path as possible,
using the same selection mechanism as in RROPN. Additionally, for each package
we precalculate the location on the path that is closest to its target, limited to
locations after the package was picked up in the correct driving direction. Finally,
we plan the pick-up and drop actions of the packages that greedily fit into the
vehicle and have the smallest precalculated distance to their target.
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Randomized Backtrack Around Path Nearby Planner

We also developed a backtracking variant of RRAPN called Randomized Back-
track Around Path Nearby (RBAPN). Instead of choosing random vehicles and
packages it backtracks over the choices it makes, guaranteeing to find an optimal
plan in the subspace of plans generated by adding such action sequences as de-
scribed in the section about RRAPN. This approach is very time-consuming and
not practically usable.

Randomized Restart Around Path Distribution Planner

Another variant of RRAPN, the Randomized Restart Around Path Distribution
planner (RRAPD), changes the vehicle choice inherited from RROPN. Instead
of using a biased coin flip based on the ε hyperparameter, RRAPD samples the
vehicle from a discrete probability distribution obtained by applying the softmax
function on the inverse distances of vehicles to the selected package:

φ′
i = 1

spd(location(p), at(vi)) + 1 ,

φi = exp(φ′
i/T )∑|V |

j=1 exp(φ′
j/T )

.

The value φi is the resulting probability of each vehicle vi ∈ V = {v1, v2, . . . , vn}.
The hyperparameter T ∈ (0,∞) is the temperature of the softmax. If set to
higher values than 1, it evens out the distribution — higher probabilities shrink
and smaller probabilities become larger. As T grows large, the distribution will
resemble a uniform distribution. If T is set to lower values, the distribution will
prefer larger values. In our experiments, we used a fixed T = 0.1, to prefer the
nearest vehicles.

Summary

The implementations of RRFL, RROP, and RROPN have empirically shown
worse performance in our tests than RRAPN and RRAPD. RRAPD, however,
performs worse than RRAPN on average. As mentioned previously, RBAPN is
unusable on larger problems due to its long run time in practice. We will evaluate
the Nearby planner of the Randomized Restart Around Path kind in our experi-
ments in Chapter 6, as they produce good quality plans in a very short time even
for larger problem instances.

All planners of the Randomized Restart family are suboptimal, not only mean-
ing that they sometimes produce suboptimal plans, but also that for some prob-
lems, even the best plan they can produce will be suboptimal. This is easiest
to prove for each planner individually, by constructing a counterexample for a
corner case of the greedy choices the planners make.
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5. Temporal Transport planning
The temporal domain variant not only has the added challenge of time, but fuel
demands and vehicle target locations are also present. In this chapter, we describe
planning approaches used for tackling these additional challenges.

5.1 Scheduling actions of sequential plans
A simple temporal planning technique that is surprisingly effective in practice
is one that simply forgets about time, finds a plan, and reintroduces time and
concurrency as an afterthought into the generated plan. The sequential variant
of Transport, however, also does not assume fuel. As a result, not all valid
sequentially relaxed plans are valid temporal Transport plans when scheduled.

To be able to precisely formulate our algorithm, we have to define the concept
of a mutex first. We say that a pair of instantiated temporal operators a, b is
in a mutual exclusion relation (mutex) if and only if a and b cannot overlap in a
valid plan. For example, a pair of pick-up actions of the same vehicle is mutex,
because the at start effect of each action is to set the ready-loading predicate
to false and the action has an at start condition that requires ready-loading to
be true.

Leveraging our domain knowledge, we pre-construct mutex relations for Trans-
port. The following actions are mutex:

• any pair of actions of the same vehicle, except a refuel and pick-up/drop
pair (in any order); and

• a drop and pick-up pair of the same package (in any order).

Since we only schedule valid sequential plans, it cannot happen that a package
is scheduled to be concurrently loaded into two different vehicles — in such se-
quential plans, pairs of pick-up and drop actions for a single package do not
overlap each other. Therefore, a mutex relation will be constructed between the
drop action of the first pair and the pick-up action of the second pair.

Our algorithm starts with relaxing the temporal problem to a sequential one
by removing fuel demands and any notion of time. After running a sequential
planner on the relaxed problem, we schedule the plan by finding a topological
ordering of a directed acyclic graph (DAG) of actions, where edges are specified
by mutex relations. Using the graph, we add actions to the temporal plan at the
earliest available time, based on the topological order.

The DAG described above is constructed from a sequential plan π by adding
all actions of the plan as nodes of the graph and all mutex relations as edges.
The direction of added edges is based on the order the actions of a mutex appear
in the original plan π.

To find a topological ordering of the mutex DAG, we use the algorithm de-
scribed in Kahn (1962). We traverse actions of the sequential plan π (nodes of
the DAG) in topological order and add each action a to the temporal plan πT

at the maximum end time in πT of all actions who are mutex with a, where a is
second in the pair. Thanks to topological ordering, all of these actions are already
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Algorithm Sequential plan scheduling
Input: a temporal Transport problem P = (S, O, γ, s0, g), a sequential plan π
Output: a temporal plan πT

1: function Build-Mutex-Graph(π)
2: G← empty directed graph
3: for all action a ∈ π do
4: G← add node a to G
5: for i← 1 to |π| do
6: for j ← i to |π| do
7: a← π[i], b← π[j]
8: if veh(a) = veh(b) and not pick-up/drop and refuel then
9: G← add edge (a, b) to G

10: else if a and b are pick-up and drop actions then
11: G← add edge (a, b) to G

12: return G
13: function Schedule(P , π, δ (= 0.001))
14: πT ← empty temporal plan, ts, te ← empty maps
15: π ← Add-Refuel-Actions(P , π)
16: if π is failure then return failure
17: G← Build-Mutex-Graph(π)
18: G′ ← Topological-Sort(G)
19: for all action b ∈ G′ do
20: ts[b]← δ + max(a,b)∈G′ te[a] ▷ If no such edge exists, defaults to 0
21: te[b]← ts[b] + duration(b)
22: πT ← append (ts[b], te[b], b) to πT

23: if ∃ vehicle v : fuel-left(v) < 0 at any point during πT then return failure
24: return πT

Figure 5.1: A scheduling algorithm for temporal planning using sequential plan-
ners. The maps ts and te represent the assigned start and end times of planned
actions. The parameter δ > 0 is a constant used for separating different ac-
tions. Topological-Sort returns the same graph, but with nodes sorted using
Kahn’s algorithm. Add-Refuel-Actions is briefly described in Section 5.1.

planned in πT and hence we know their end times. The described algorithm is
summarized in Figure 5.1.

Previously left out was an important step of the algorithm, which consists of
adding fuel constraints back into the plan. Just before constructing the mutex
DAG, we attempt to add the least amount of refuel actions into the plan, so
that no fuel capacity constraints are broken. This is done iteratively for each
vehicle, by looking at combinations of possible places to refuel for that vehicle in
a plan. This approach, however, does not always lead to a valid plan, because
not all sequential plans go through enough locations that have a petrol station to
allow all vehicles to be sufficiently fueled. The problem can be avoided by simply
giving up on the current plan and attempting to generate another sequential plan.
We keep track of the best-known plan and always update it if we find a better
scheduled and valid plan. Despite this, some combinations of sequential planners
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and specific problem instances might never generate a sequential plan that when
scheduled produces a valid temporal plan (due to fuel capacities of vehicles).

A big advantage of using a scheduling approach to temporal planning is that it
is possible to reuse sequential planners which have already been created and opti-
mized. The choice of an underlying planner makes a big difference in the quality
of scheduled plans. Planners that generate various different plans generally per-
form better in such a scenario, because the scheduler has more opportunities to
find an extension of the plan with respect to fuel demands. In case it is efficient
to change the internals of sequential planners, we could incorporate fuel directly
into the sequential planner, and only employ scheduling for parallelizing actions
in the plan.

Also, suboptimal plans in the sequential domain sometimes yield better sched-
uled plans than optimal ones. For example, consider a triangular road network
with three locations A, B, and C, connected by roads of length 1. There are two
packages pA, pB and two vehicles vA, vB, positioned at A and B respectively. The
target location of both packages is C. The capacities and fuel capacities of all
vehicles are 2 and both packages have a size of 1. In the sequential variant, the
optimal plan consists of either vehicle picking up the package at their location,
driving over to the location with the other package, and delivering both packages
to C. The cost of such a plan is 6. However, in the temporal variant, both of the
vehicles can drive at the same time, meaning that the optimal plan makespan
is only 3. If the sequential planner never generates a plan using both vehicles,
the temporal scheduler has no way of parallelizing the generated actions, hence
it will never schedule a plan with a lower makespan than 6.

We will test the scheduling algorithm with a Randomized Restart planner
(Section 4.2.1) and a meta-heuristically weighted forward planner (Section 4.1.4)
in Chapter 6.

5.2 Ad-hoc temporal planning
The problem with simply adding fuel to sequential plans generated by planners
that have no notion of fuel is that for some problems, the generated plans may
never be valid even if vehicles refuel at every opportunity they get.

One possible solution to this issue is to create a fuel-aware ad-hoc planner
similar to the ones created in Section 4.2.1. We design the Temporal Randomized
Restart Around Path Nearby Planner (TRRAPN) based on this idea, building
on top of the RRAPN planner.

Just before choosing between a random vehicle and the nearest vehicle in the
original algorithm of RROPN, we uniformly sample a random number from the
interval [0, 1] and if it is smaller than some parameter ∆ ∈ [0, 1], we do a fuel
run instead. A fuel run is a series of actions in which a vehicle drives to a petrol
station. The rest of the algorithm stays the same.

In TRRAPN, the vehicle is chosen at random from a uniform distribution.
The petrol station is chosen at random from the inverse distance distribution
of the vehicle’s location towards the petrol stations, similar to the distribution
defined for RRAPD in Section 4.2.1. The ∆ parameter is exponentially increased
during a planner run. After χ sequential plans are generated, which are all invalid
fuel-wise (after adding back fuel and scheduling them), ∆ is multiplied by δ and
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capped at 0.5:
∆← min(0.5, δ ·∆).

In all our experiments, the step δ = 2, χ = 1000, and ∆ is set to 3 · 106 initially.
The temperature parameter T in the inverse distance distribution of petrol sta-
tions is set to 0.05. We will also evaluate this planner in Chapter 6.
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6. Experimental evaluation
In this chapter, we will describe and run experiments that compare our planners
from the last two chapters with domain-independent planners from the IPC. We
will briefly discuss the acquired results and interpret them.

6.1 Methodology
Using our benchmarking software (see Attachment 4), we will now run experi-
ments in an environment similar to the original IPCs. The rule pages state that
planners have to be single-threaded and use a maximum of 2, 4, or 6 GB of
memory (depending on the competition year), with a maximum run time of 30
minutes.

Since the IPC rule pages vary on the exact processor specification or the
amount of memory available to each planner between competitions, we adjust
the parameters slightly by running our planners for 30 minutes on each problem,
using 4 GB of RAM. Our planners will get canceled and prompted for a plan after
the time runs out. All our experiments are run on the clusters of MetaCentrum.1
Due to the nature of computing on MetaCentrum, we were not able to guarantee
that all problems and planners run on the exact same processor, only on very
similar ones (approximately equivalent to Intel Xeon E5-2650 v2 2.6 GHz).
The performance of our planners does not change significantly when changing
the run time from 30 to 15 minutes or when run on slightly different processors.

Given that the hardware platforms of past IPCs are sufficiently similar to our
environment and the fact that our planners perform well even in shorter runs, we
do not rerun the planners from the original competitions — instead, we use the
scores from IPC results.

We run all our planner implementations in Java using Oracle’s OpenJDK
version 1.8.0 131-b11. The results presented here were obtained with the 0.9.2
version of the TransportEditor project.2 The NOTICE.txt files in the project
module directories specify the exact versions of libraries used. In all planners
where nondeterminism occurs, we set the initial random seed to 2017 (on all
individual problem runs).

The evaluation criteria remain the same as in the IPC: we focus on plan
quality in favor of planner run time. The quality of a plan for a specific planner
and sequential problem p is defined as:

total-cost(planner(p))
total-cost(BEST ) ,

where the results called BEST are either precalculated outside of the competition
environment or they are the best result of one of the planners in the competition,
depending on which plan has a lower total cost. Quality is, therefore, a num-
ber between 0 and 1. The overall goal for planners is to maximize the sum of
qualities over the problem instances in a given dataset, called the total quality.

1https://www.metacentrum.cz/en/
2Git tag v0.9.2, available at https://github.com/oskopek/TransportEditor
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For temporal domains, quality is calculated in the same way, just by substituting
total cost for total time. We sometimes refer to total cost and total time as the
score of the planner, a term that is not dependent on the domain variant.

We will use four datasets for our experiments — the seq-sat-6, seq-sat-7, and
seq-sat-8 datasets for sequential and the tempo-sat-6 for temporal planners (Sec-
tion 3.3). All the datasets used are available in the software project sources (see
Attachment 1). Descriptions of planners that we will refer to by their compe-
tition names can be found in the respective competition results or booklets for
IPC 2008,3 IPC 2011 (Garćıa-Olaya et al., 2011), and IPC 2014 (Vallati et al.,
2015). Due to space constraints, we only show the three best non-baseline plan-
ners from each competition in the result quality tables and plots, based on total
quality. In the temporal dataset tempo-sat-6 quality table, we only show the two
best and add another external domain-independent planner to the comparison,
the 2014 version of Temporal Fast Downward (TFD2014).

6.2 Sequential Transport
In this section, we present the results of our sequential planners on the seq-sat-6,
seq-sat-7, and seq-sat-8 datasets. Specifically, these planners are included in the
experiment:

MSFA3 The meta-heuristically weighted SFA planner (Section 4.1.4) with the
package and vehicle distance heuristic (Section 4.1.2)

MSFA5 The meta-heuristically weighted SFA planner with the general marking
heuristic (Section 4.1.2)

RRAPN The Randomized Restart Around Path Nearby planner (Section 4.2.1)

6.2.1 Results
We show an IPC quality table and a quality plot for the experimental runs on the
seq-sat-6 dataset (Figure 6.1), seq-sat-7 dataset (Figure 6.2), and the seq-sat-8
dataset (Figure 6.3). Details about the specific plans along with the benchmark
results can be found in Attachment 1.

IPC 2008

In the updated results of the sequential satisficing track of IPC 20084 published
after the competition, the overall winner LAMA (a Fast Downward based planner)
was hands-down the best planner on the sequential Transport domain, winning
with a total quality of 28.93/30, where all other planners had less than 20/30.
Only 5 plans generated by LAMA had a worse total cost than the best known
plans.

After adding our planners to the results, the total quality of LAMA drops to
24.38/30, because several larger problems were solved better than the best known
solution from IPC 2008. Our best planner on the IPC 2008 dataset, RRAPN,

3http://icaps-conference.org/ipc2008/deterministic/Planners.html
4http://icaps-conference.org/ipc2008/deterministic/Results.html
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# MSFA3 MSFA5 RRAPN dtg-plan lama sgplan6 BEST

p01 54 1.00 54 1.00 54 1.00 54 1.00 54 1.00 54 1.00 54
p02 270 1.00 270 1.00 288 0.94 304 0.89 270 1.00 414 0.65 270
p03 409 0.90 407 0.91 419 0.88 635 0.58 497 0.74 801 0.46 369
p04 464 0.78 490 0.74 412 0.88 983 0.37 504 0.72 942 0.39 363
p05 704 0.83 704 0.83 582 1.00 1187 0.49 737 0.79 1186 0.49 582
p06 989 0.76 967 0.78 1024 0.74 1766 0.43 1117 0.68 1868 0.40 755
p07 1011 0.97 1011 0.97 982 1.00 1868 0.53 1260 0.78 2081 0.47 982
p08 1053 0.88 1053 0.88 924 1.00 2166 0.43 1216 0.76 2135 0.43 924
p09 1027 0.91 1027 0.91 932 1.00 1880 0.50 1001 0.93 2143 0.43 932
p10 1360 0.78 1360 0.78 1059 1.00 2260 0.47 1285 0.82 2091 0.51 1059
p11 473 1.00 473 1.00 473 1.00 473 1.00 473 1.00 475 1.00 473
p12 823 0.97 823 0.97 872 0.91 800 0.99 795 1.00 1244 0.64 795
p13 1096 0.88 1096 0.88 965 1.00 2751 0.35 1147 0.84 2827 0.34 965
p14 1582 1.00 1582 1.00 1966 0.80 3507 0.45 2157 0.73 3328 0.48 1582
p15 2367 0.96 2280 1.00 3129 0.73 5221 0.44 2954 0.77 5659 0.40 2280
p16 2321 1.00 2321 1.00 2764 0.84 6199 0.37 4928 0.47 6144 0.38 2321
p17 3209 1.00 3209 1.00 4315 0.74 7239 0.44 4193 0.77 7494 0.43 3209
p18 3322 0.88 2936 1.00 3663 0.80 7542 0.39 4151 0.71 7737 0.38 2936
p19 5051 1.00 5051 1.00 5073 1.00 9921 0.51 7648 0.66 8991 0.56 5051
p20 3636 1.00 3873 0.94 4607 0.79 uns. 6773 0.54 8663 0.42 3636
p21 431 1.00 431 1.00 431 1.00 431 1.00 431 1.00 431 1.00 431
p22 675 1.00 675 1.00 677 1.00 679 0.99 675 1.00 1268 0.53 675
p23 1140 0.73 1140 0.73 897 0.93 2414 0.35 837 1.00 2119 0.39 837
p24 1227 1.00 1227 1.00 1352 0.91 2790 0.44 1301 0.94 2909 0.42 1227
p25 1943 0.92 1943 0.92 1785 1.00 4007 0.45 1833 0.97 3764 0.47 1785
p26 2421 0.72 2421 0.72 1753 1.00 4036 0.43 2502 0.70 3598 0.49 1753
p27 3255 0.75 3255 0.75 2440 1.00 5791 0.42 3317 0.74 5948 0.41 2440
p28 2465 1.00 2465 1.00 2575 0.96 6346 0.39 3027 0.81 7300 0.34 2465
p29 2817 0.99 2890 0.97 2795 1.00 7168 0.39 3294 0.85 7237 0.39 2795
p30 4703 0.76 4703 0.76 3595 1.00 uns. 5513 0.65 7892 0.46 3595

total 27.39 27.43 27.85 15.48 24.38 15.16

(a) Quality and score of sequential planners on the seq-sat-6 dataset.

Planner qualities
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(b) Quality plot of sequential planners on the seq-sat-6 dataset.

Figure 6.1: Planner results on seq-sat-6.
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# MSFA3 MSFA5 RRAPN lama-2008 lama-2011 roamer BEST

p01 1053 0.88 1053 0.88 923 1.00 1050 0.88 1485 0.62 1050 0.88 923
p02 1027 0.91 1027 0.91 932 1.00 996 0.94 1010 0.92 996 0.94 932
p03 2817 0.99 2890 0.97 2795 1.00 3313 0.84 3882 0.72 3275 0.85 2795
p04 2321 1.00 2321 1.00 2764 0.84 5135 0.45 3741 0.62 5841 0.40 2321
p05 3209 1.00 3209 1.00 4315 0.74 5481 0.59 4805 0.67 5553 0.58 3209
p06 3322 0.88 2936 1.00 3663 0.80 4320 0.68 5415 0.54 4681 0.63 2936
p07 5051 1.00 5051 1.00 5073 1.00 6652 0.76 7222 0.70 7403 0.68 5051
p08 1360 0.78 1360 0.78 1059 1.00 1211 0.87 1452 0.73 1211 0.87 1059
p09 3636 1.00 3873 0.94 4607 0.79 6786 0.54 6479 0.56 6806 0.53 3636
p10 4703 0.76 4703 0.76 3595 1.00 5943 0.60 5641 0.64 5445 0.66 3595
p11 1426 0.87 1426 0.87 1236 1.00 1547 0.80 2113 0.58 1901 0.65 1236
p12 1466 0.92 1466 0.92 1349 1.00 1929 0.70 1947 0.69 1915 0.70 1349
p13 1630 1.00 1630 1.00 1740 0.94 uns. 2932 0.56 2746 0.59 1630
p14 5919 1.00 5930 1.00 6221 0.95 7925 0.75 8493 0.70 7940 0.75 5919
p15 4984 0.98 4884 1.00 5709 0.86 7192 0.68 6909 0.71 6924 0.71 4884
p16 6124 0.91 6124 0.91 5567 1.00 6951 0.80 uns. uns. 5567
p17 4432 1.00 4838 0.92 4558 0.97 6166 0.72 5899 0.75 5209 0.85 4432
p18 3963 0.90 3963 0.90 3586 1.00 5381 0.67 5690 0.63 3902 0.92 3586
p19 4124 1.00 4124 1.00 4133 1.00 5716 0.72 5777 0.71 5257 0.78 4124
p20 3765 1.00 3765 1.00 4050 0.93 5831 0.65 4435 0.85 4793 0.79 3765

total 18.78 18.75 18.81 13.63 12.90 13.76

(a) Quality and score of sequential planners on the seq-sat-7 dataset.

Planner qualities
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(b) Quality plot of sequential planners on the seq-sat-7 dataset.

Figure 6.2: Planner results on seq-sat-7.
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# MSFA3 MSFA5 RRAPN ibacop mercury yahsp3-mt BEST

p01 1596 0.82 1596 0.82 1558 0.84 2045 0.64 1309 1.00 3044 0.43 1309
p02 2109 1.00 2109 1.00 2276 0.93 5902 0.36 2125 0.99 4250 0.50 2109
p03 1879 0.82 1879 0.82 1784 0.86 2653 0.58 1539 1.00 3274 0.47 1539
p04 5163 0.99 5092 1.00 7508 0.68 8871 0.57 5678 0.90 8228 0.62 5092
p05 5394 1.00 5958 0.91 7475 0.72 14170 0.38 6235 0.87 10938 0.49 5394
p06 5163 0.99 5092 1.00 7508 0.68 8871 0.57 5678 0.90 8228 0.62 5092
p07 4202 1.00 4202 1.00 4996 0.84 11802 0.36 4839 0.87 7804 0.54 4202
p08 4996 0.89 4948 0.90 5254 0.85 12762 0.35 4467 1.00 8590 0.52 4467
p09 4202 1.00 4202 1.00 4996 0.84 11802 0.36 4839 0.87 7680 0.55 4202
p10 4473 1.00 4473 1.00 5657 0.79 8260 0.54 4626 0.97 8410 0.53 4473
p11 1395 0.96 1395 0.96 1555 0.86 2154 0.62 1336 1.00 2429 0.55 1336
p12 1579 1.00 1579 1.00 2073 0.76 2524 0.63 1641 0.96 3646 0.43 1579
p13 1683 0.68 1683 0.68 1537 0.75 2085 0.55 1147 1.00 3700 0.31 1147
p14 7196 0.83 7196 0.83 6764 0.88 10667 0.56 5974 1.00 9334 0.64 5974
p15 7671 0.69 7671 0.69 7906 0.67 12975 0.41 5320 1.00 11822 0.45 5320
p16 5179 0.91 5107 0.92 6836 0.69 10918 0.43 4695 1.00 8536 0.55 4695
p17 4823 0.94 4646 0.98 5290 0.86 9659 0.47 4540 1.00 8107 0.56 4540
p18 4585 1.00 4585 1.00 5547 0.83 10755 0.43 4840 0.95 10521 0.44 4585
p19 3812 1.00 3812 1.00 4705 0.81 10780 0.35 3881 0.98 7322 0.52 3812
p20 4173 0.92 3923 0.98 4991 0.77 9632 0.40 3853 1.00 6643 0.58 3853

total 18.44 18.49 15.91 9.56 19.25 10.29

(a) Quality and score of sequential planners on the seq-sat-8 dataset.

Planner qualities
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(b) Quality plot of sequential planners on the seq-sat-8 dataset.

Figure 6.3: Planner results on seq-sat-8.
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achieves a total quality of 27.85/30, which is a slight improvement over LAMA and
other planners. The biggest gain of RRAPN is in being able to calculate solutions
of larger problems fast, which can be observed on the results on problems 7–10 or
25–27, which are some of the largest problems. On the other hand, RRAPN fails
to achieve optimal scores on some smaller problems like problem 2 or 12, due to
its explicit nature.

MSFA3 and MSFA5 are quite similar both in their construction and results
on this dataset. They generally obtain better results than RRAPN on smaller
problems (problems 2–3, 12, 22), but they can generate very good results even
on larger problems, like 14–20 or 28–29. The reason why RRAPN occasionally
obtains better plans than the admissible heuristic of MSFA5 is that we weight it
with weights greater than or equal to 1, therefore, making the heuristic inadmis-
sible. Based on total quality, MSFA5 marginally comes out on top as the better
one of the two MSFA planners on this dataset. All three of our planners beat all
planners from the original competition based on total quality.

IPC 2011

The 2011 competition featured 20 sequential Transport problems, with 4 planners
(dae yahsp, LAMA 2008 and 2011, and roamer) achieving a total quality of more
than 15/20. Interestingly, LAMA 2008 was able to produce better plans than
its 2011 version in 12 out of 20 problems. The overall winner on Transport in
2011, roamer, achieved comparable scores on most problems to both versions of
LAMA.

RRAPN consistently achieves better scores than all domain-independent plan-
ners from the original competition in all the 20 problems. This can again be
attributed to the size of the problems (see Table 3.2).

Even though RRAPN is better than the original planners more often than
both MSFA planners, MSFA3 comes out on top based on total cost. Nonethe-
less, the differences in performance between all three of our planners are almost
indistinguishable, even on most problem instances individually. Even more in-
teresting, the problems where MSFA planners perform well are complementary
to the ones where RRAPN performs well, as is visible on the results of problems
4–6, 10–12, and 13–15.

IPC 2014

In the sequential satisficing track of IPC 2014, the winner on the Transport
domain was without a doubt the Mercury planner, achieving a stunning 20/20
total quality. Even more interesting is the fact that the runner-up yahsp3-mt
achieved a score of only 10.74/20 and all other planners achieved sub 10/20 total
quality, accentuating the performance of Mercury even more.

After adding the results of our planners to the quality table, the total quality
of yahsp3-mt is lowered to 10.29/20. Mercury loses its spotless result, but still
significantly dominates all other planners, including ours, at 19.25/20.

RRAPN manages to outperform yahsp3-mt with 15.91/20, yet it fails to match
the results of Mercury, not even in one problem (it does come close in problems 7
and 9). Both MSFA planners outperform RRAPN on this dataset with qualities
just under 18.50/20, but still do not come reasonably close to beating Mercury.
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However, they do (marginally) outperform Mercury on some problems, like prob-
lems 4–7, 9–10, 12, and 18–19. The results of MSFA3 and MSFA5 on this dataset
are almost identical.

6.3 Temporal Transport
In this section, we present the results of our temporal planners on the tempo-sat-6
dataset. The following planners are included in the experiment:

MSFA5Sched The scheduled MSFA5 planner (Sections 4.1.4 and 4.1.2)

RRAPNSched The scheduled (Section 5.1) RRAPN planner (Section 4.2.1)

TFD2014 The Temporal Fast Downward planner, version 0.4 from IPC 2014
(Vallati et al., 2015, Preferring Preferred Operators in Temporal Fast Down-
ward)

TRRAPN The Temporal RRAPN planner (Section 5.2)

An external temporal planner, TFD2014, was added to the experiments to
be able to compare our planners to more recent systems. TFD2014 is a newer
version of the original TFD planner that took part in IPC 2008.

6.3.1 Results
We show an IPC quality table and a quality plot of an experimental run of these
planners on the tempo-sat-6 dataset (Figure 6.4). Additionally, sample Gantt
charts (Gantt, 1910) of two chosen plans are shown in Figure 6.5. The generated
plans and benchmark results can be found in Attachment 1.

Planners that entered the 2008 temporal satisficing track at the IPC did not
cope well with the Transport domain — only two non-baseline planners (SGPlan6
and TFD) were able to produce at least one plan for any problem. Additionally,
only the smallest problem, problem 1, was solved to the best known score by
any planner. The best total quality was only 7.5/30, achieved by SGPlan6. No
other domain in the temporal track had a lower best total quality than Transport,
which, assuming reasonably generated problem instances, hints at Transport be-
ing one of the harder domains for domain-independent temporal planners. We
observe an evident performance increase of Temporal Fast Downward, when com-
paring the qualities of plans of TFD (from 2008) and TFD2014.

Our results further show that using a simple domain-dependent scheduling
approach yields an improvement over domain-independent temporal planners that
took part in IPC 2008. Our scheduling planners RRAPNSched and MSFA5Sched
achieve total qualities of 27.16/30 and 14.50/30, respectively. The scheduled
MSFA5 planner does not generate plans of such variety as RRAPN, and therefore
produces worse results when scheduled using our algorithm, mostly due to the
inability of the scheduler to add enough refuel actions to the existing plans to
make them feasible.

RRAPNSched, on the other hand, is able to beat even newer temporal plan-
ners like TFD2014 by a significant margin. We see that RRAPNSched produces
plans with worse scores than the best known score on smaller problems, which
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# MSFA5Sched RRAPNSched TFD2014 TRRAPN sgplan6 tfd BEST

p01 52 1.00 52 1.00 52.02 1.00 52 1.00 52 1.00 52 1.00 52
p02 125.01 0.98 126.01 0.98 150.11 0.82 126.01 0.98 217 0.57 208 0.59 123
p03 252.02 0.75 198.01 0.95 252.14 0.75 198.01 0.95 432 0.44 669 0.28 189
p04 341.02 0.76 260.02 1.00 425.29 0.61 267.01 0.97 845 0.31 uns. 260.02
p05 285.03 0.85 243.02 1.00 367.32 0.66 249.02 0.98 359 0.68 uns. 243.02
p06 316.02 0.80 253.01 1.00 408.31 0.62 265.02 0.95 965 0.26 uns. 253.01
p07 uns. 367.03 1.00 uns. 369.03 0.99 uns. uns. 367.03
p08 uns. 481.04 1.00 uns. 532.04 0.90 uns. uns. 481.04
p09 uns. 286.03 1.00 494.44 0.58 309.03 0.93 uns. uns. 286.03
p10 uns. uns. 939.8 0.88 827.07 1.00 uns. uns. 827.07
p11 332.01 1.00 332.01 1.00 342.09 0.97 332.01 1.00 629 0.53 549 0.60 332
p12 483.01 0.90 490.01 0.88 543.13 0.80 490.01 0.88 817 0.53 982 0.44 433
p13 572.02 0.68 459.01 0.85 1172.38 0.33 434.01 0.90 650 0.60 3383 0.11 389
p14 777.03 0.77 621.02 0.96 1938.75 0.31 620.02 0.96 uns. uns. 595
p15 1081.04 0.76 866.04 0.95 1143.45 0.72 860.04 0.96 2249 0.37 uns. 824
p16 1532.07 0.49 760.03 0.98 2198.97 0.34 752.03 0.99 1875 0.40 uns. 748
p17 1317.07 0.60 906.03 0.87 2393.97 0.33 916.04 0.86 3331 0.24 uns. 789
p18 1960.09 0.62 1217.05 1.00 uns. 1224.06 0.99 uns. uns. 1217.05
p19 2226.12 0.56 1266.06 0.99 uns. 1254.06 1.00 uns. uns. 1254.06
p20 2596.13 0.42 1399.07 0.77 uns. 1488.08 0.73 6362 0.17 uns. 1084
p21 94.02 0.67 69.01 0.91 102.14 0.62 69.01 0.91 113 0.56 161 0.39 63
p22 192.03 0.49 114.01 0.82 265.38 0.35 114.01 0.82 238 0.39 uns. 94
p23 278.04 0.44 156.02 0.79 342.44 0.36 156.02 0.79 642 0.19 uns. 123
p24 262.04 0.53 184.02 0.76 uns. 184.02 0.76 1116 0.13 uns. 140
p25 373.05 0.42 199.02 0.78 uns. 191.02 0.82 uns. uns. 156
p26 uns. 234.03 1.00 uns. 234.02 1.00 uns. uns. 234.02
p27 uns. 254.03 1.00 uns. 256.03 0.99 uns. uns. 254.03
p28 uns. 312.03 1.00 uns. 314.03 0.99 uns. uns. 312.03
p29 uns. 314.03 1.00 uns. 314.03 1.00 uns. uns. 314.03
p30 uns. 385.04 0.90 uns. 346.03 1.00 uns. uns. 346.03

total 14.50 27.16 11.05 28.02 7.35 3.43

(a) Quality and score of temporal planners on the tempo-sat-6 dataset.
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(b) Quality plot of temporal planners on the tempo-sat-6 dataset.

Figure 6.4: Planner results on tempo-sat-6.
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is mainly due to the fact that plans for smaller problems are easier to precalcu-
late and hence the best known score estimate is closer to the optimum than the
estimates for larger problems.

An interesting case is problem 10, which was not solved by any of our plan-
ners based purely on scheduling. This problem contains a single petrol station at
location city-loc-1, which, unfortunately, is not present in many precomputed
shortest paths and the vehicles, therefore, do not drive through it often. Further-
more, even fewer of those paths coincide with ones on which the planners deliver
packages. This results in most generated plans being infeasible fuel-wise.

One way to solve the issue is to use TRRAPN planner’s approach, which
knows about fuel during planning and sometimes adds fuel runs to the plan,
during which a chosen vehicle drives to a petrol station to refuel. TRRAPN
achieves the best total quality from all our planners, beating RRAPNSched by
about 0.8, even though it is marginally worse on some problems (for example,
problems 4–7). TRRAPN makes up for this by getting better scores on larger
problems, where it takes RRAPNSched more effort to plan with fuel feasibly, as
can be observed on problems 10, 19, 25, and 30.

In Figure 6.5, we see a comparison of the plans of RRAPNSched and TFD2014
for problem 12. Observe that the important difference between the two plans
is that truck-1 chooses to pick up and move package-4 while it is delivering
package-2. It then later picks it up again and delivers it while truck-2 is deliv-
ering package-3. In the plan of TFD2014, truck-1 did not pick up package-4
while delivering package-2 and then had to travel further to deliver it — this is
basically the only difference between the two plans, and it makes a difference in
makespan of more than 50. Finally, observe that due to the nature of RRAPN,
truck-1 dropped package-4 and then went back to pick it up, even though it
had enough capacity to carry it for the whole time. Nonetheless, it is important
to note that this had no effect on the total makespan of the plan.

6.4 Overall results
The attained results show that domain-specific information can be leveraged to
generate plans of better quality. We have designed and implemented Transport
planners that are able to beat all results from the sequential and temporal satis-
ficing tracks of the 2008 and 2011 IPCs. In the 2014 IPC, we would have attained
second place on overall quality in the Transport domain, behind the impressive
result of Mercury. Our planners achieve satisfactory results across datasets, as
can be observed in Table 6.1.

Another major advantage previously unmentioned is that our planners gener-
ate good solutions quite fast. To show this, we present results from running all
our planners on all problems for 3 seconds each (Table 6.2). The achieved scores
are very close to the scores from long planning runs, except for problems where
the planner did not find a plan at all in the given time limit.
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Planner Average
quality

MSFA3 0.923
MSFA5 0.924
RRAPN 0.894

(a) Avg. quality on sequential datasets.

Planner Average
quality

MSFA5Sched 0.483
RRAPNSched 0.905
TRRAPN 0.934

(b) Avg. quality on the temporal dataset.

Table 6.1: Average quality of our planners across datasets.

(a) RRAPNSched

(b) TFD2014

Figure 6.5: Gantt charts of the RRAPNSched and TFD2014 planners on the
tempo-sat-6 p12 problem.
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# MSFA3 MSFA5 RRAPN BEST

p01 54 1.00 54 1.00 54 1.00 54
p02 270 1.00 270 1.00 288 0.94 270
p03 419 0.85 408 0.87 419 0.85 355
p04 464 0.78 490 0.74 412 0.88 363
p05 732 0.80 732 0.80 609 0.96 582
p06 989 0.76 967 0.78 1091 0.69 755
p07 1011 0.98 1011 0.98 1060 0.93 988
p08 1053 0.88 1053 0.88 1004 0.92 925
p09 1027 0.93 1027 0.93 1048 0.91 955
p10 1360 0.78 1360 0.78 1164 0.91 1059
p11 473 1.00 473 1.00 473 1.00 473
p12 823 0.97 823 0.97 872 0.91 795
p13 1096 0.88 1096 0.88 965 1.00 965
p14 1582 1.00 1582 1.00 1966 0.80 1582
p15 2367 0.96 2280 1.00 3147 0.72 2280
p16 2321 1.00 2321 1.00 2832 0.82 2321
p17 3209 1.00 3209 1.00 4413 0.73 3209
p18 3406 0.86 2936 1.00 3754 0.78 2936
p19 5051 1.00 5051 1.00 5187 0.97 5051
p20 4189 0.87 4189 0.87 5095 0.71 3636
p21 431 1.00 431 1.00 431 1.00 431
p22 675 1.00 710 0.95 677 1.00 675
p23 1140 0.73 1140 0.73 897 0.93 837
p24 1227 1.00 1227 1.00 1423 0.86 1227
p25 1943 0.92 1943 0.92 1881 0.95 1785
p26 2421 0.74 2421 0.74 1855 0.97 1797
p27 3255 0.77 3255 0.77 2634 0.96 2521
p28 2465 1.00 2465 1.00 2807 0.88 2465
p29 2817 1.00 2890 0.97 3238 0.87 2817
p30 4703 0.76 4703 0.76 4278 0.84 3595

total 27.23 27.32 26.70

(a) Quality and score of our planners on
the seq-sat-6 dataset.

# MSFA5S. RRAPNS. TRRAPN BEST

p01 52 1.00 52 1.00 52 1.00 52
p02 150 0.82 126 0.98 126 0.98 123
p03 uns. 198 0.95 198 0.95 189
p04 341 0.76 267 0.97 267 0.97 260
p05 285 0.85 277 0.88 275 0.88 243
p06 316 0.80 284 0.89 288 0.88 253
p07 uns. uns. uns. 367
p08 uns. uns. uns. 532
p09 uns. 464 0.62 436 0.66 286
p10 uns. uns. uns. 827
p11 332 1.00 332 1.00 332 1.00 332
p12 483 0.90 490 0.88 490 0.88 433
p13 572 0.68 486 0.80 484 0.80 389
p14 777 0.77 654 0.91 669 0.89 595
p15 1081 0.76 939 0.88 914 0.90 824
p16 1532 0.49 1088 0.69 1061 0.70 748
p17 1495 0.53 1170 0.67 1323 0.60 789
p18 1960 0.62 1822 0.67 1725 0.71 1217
p19 2226 0.56 1609 0.78 1692 0.74 1254
p20 2596 0.42 4688 0.23 2969 0.37 1084
p21 102 0.62 94 0.67 69 0.91 63
p22 192 0.49 114 0.82 114 0.82 94
p23 278 0.44 202 0.61 194 0.63 123
p24 350 0.40 202 0.69 184 0.76 140
p25 uns. 201 0.78 224 0.70 156
p26 uns. 286 0.83 288 0.82 236
p27 uns. 355 0.72 298 0.85 254
p28 uns. 340 0.92 468 0.67 312
p29 uns. 507 0.62 372 0.84 314
p30 uns. 692 0.50 517 0.67 348

total 12.91 20.95 21.60

(b) Quality and rounded score of our plan-
ners on the tempo-sat-6 dataset.

# MSFA3 MSFA5 RRAPN BEST

p01 1053 0.88 1053 0.88 1018 0.91 925
p02 1027 0.93 1027 0.93 1081 0.88 955
p03 2817 1.00 2890 0.97 3267 0.86 2817
p04 2321 1.00 2321 1.00 2899 0.80 2321
p05 3209 1.00 3209 1.00 4434 0.72 3209
p06 3406 0.86 2936 1.00 3754 0.78 2936
p07 5051 1.00 5051 1.00 5187 0.97 5051
p08 1360 0.78 1360 0.78 1164 0.91 1059
p09 3636 1.00 4189 0.87 5095 0.71 3636
p10 4703 0.76 4703 0.76 4262 0.84 3595
p11 1426 0.87 1426 0.87 1341 0.92 1238
p12 1466 0.92 1466 0.92 1544 0.87 1349
p13 1630 1.00 1630 1.00 1982 0.82 1630
p14 uns. uns. 6745 0.88 5919
p15 uns. uns. 6175 0.79 4884
p16 uns. uns. 6259 0.89 5567
p17 4838 0.92 4838 0.92 5440 0.81 4432
p18 3963 0.92 uns. 4145 0.88 3641
p19 4124 1.00 4124 1.00 4620 0.89 4124
p20 uns. uns. 4662 0.81 3765

total 14.84 13.90 16.97

(c) Quality and score of our planners on
the seq-sat-7 dataset.

# MSFA3 MSFA5 RRAPN BEST

p01 1596 0.82 1596 0.82 1828 0.72 1309
p02 2109 1.00 2109 1.00 2543 0.83 2109
p03 1879 0.82 1879 0.82 1898 0.81 1539
p04 uns. uns. 8065 0.63 5092
p05 uns. uns. 7730 0.70 5394
p06 uns. uns. 7978 0.64 5092
p07 uns. uns. 5807 0.72 4202
p08 uns. uns. 5848 0.76 4467
p09 uns. 4202 1.00 5839 0.72 4202
p10 uns. uns. 6304 0.71 4473
p11 1395 0.96 1395 0.96 1806 0.74 1336
p12 1579 1.00 1579 1.00 2263 0.70 1579
p13 1683 0.68 1683 0.68 1698 0.68 1147
p14 uns. uns. 7785 0.77 5974
p15 uns. uns. 8136 0.65 5320
p16 uns. 5179 0.91 7249 0.65 4695
p17 uns. uns. 5789 0.78 4540
p18 uns. 4585 1.00 6160 0.74 4585
p19 3812 1.00 3812 1.00 5364 0.71 3812
p20 4173 0.92 4173 0.92 5544 0.69 3853

total 7.20 10.11 14.36

(d) Quality and score of our planners on
the seq-sat-8 dataset.

Table 6.2: Results of our planners when run for 3 seconds on all datasets.
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Conclusion
Domain-specific planning has historically been neglected as not general enough
and, therefore, theoretically unimportant. Our work shows that there are more
than enough problems left to solve when planning with prior domain knowledge,
both theoretically and in practical approaches.

To support this statement, we have discussed the theoretical challenges un-
derlying planning in general and how the challenges change when domain knowl-
edge is added. We have analyzed variants of the Transport domain from the
International Planning Competition and designed various planners specific to
the domain. Using results of the experimental evaluation of several discussed
approaches on datasets of the Transport domain, we have shown the ability to
achieve comparable results to state-of-the-art domain-independent planners. The
performance of domain-independent planners is generally very impressive, given
the difficulty of the problem they are solving. Despite the broad misconception
that they are not useful in practice, we have not managed to beat all of them
even when leveraging domain-specific knowledge acquired by our analysis.

There remain more promising approaches to apply to planning for the Trans-
port domain and to domain-specific planning in general. We list a few, in our
opinion, perspective methods, which were not evaluated in this work:

• Hierarchical Task Networks: HTN planning uses tasks, a higher level and
usually domain-specific description of sequences of operators to carry out
some goal (Ghallab et al., 2004, Chapter 11). An HTN planner decomposes
these tasks and embeds them in a classical plan. This approach has been
thoroughly studied and is arguably one of the most used in practice today.
The ad-hoc planners we designed are conceptually similar to HTN planning.

• Pointer Networks and Reinforcement Learning: A recent attempt at train-
ing special architectures of neural networks to solve TSP problem instances
using reinforcement learning by Bello et al. (2016) shows reasonable promise
for the future. While this technique is highly experimental at the moment,
neural networks have successfully helped in pushing the limits of other fields
before.

• Learning a domain-specific heuristic function: Another neural network ap-
proach aims to help solve the problem of coming up with a good heuristic
for a domain. Chen and Wei (2011) train a neural network to use as a
heuristic for state space search, which may help when creating a heuristic is
simply too challenging or time-consuming. A similar approach is also used
in DeepStack (Moravč́ık et al., 2017), which recently succeeded in beating
human players in poker (a good example of a problem with a very large
search space).

To make the analysis and planner design easier, we have developed Transport-
Editor (see Attachment 3), an intuitive graphical desktop application for trans-
portation planning. TransportEditor was recently accepted to the System Demon-
strations and Exhibits track at the 27th International Conference on Automated
Planning and Scheduling (Škopek and Barták, 2017).
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On the Solution of Travelling Salesman Problems. Documenta Mathematica,
Journal der Deutschen Mathematiker Vereinigung, pages 645–656, 1998. Extra
volume, ICM Berlin 1998.

David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. The
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Attachments

1. CD contents
The compact disc attached to this thesis contains the following:

• thesis.pdf, the PDF version of this thesis;

• TransportEditor-0.9.2/, the 0.9.2 release of the TransportEditor soft-
ware, also obtainable at (Git tag v0.9.2):
https://github.com/oskopek/TransportEditor/releases. Contains:

– bin/, built executable JAR files (with dependencies included);
– datasets/, the datasets used at IPC;
– docs/, the user, developer, and JavaDoc documentation and a speci-

fication document for TransportEditor;
– sources/, sources of TransportEditor along with source of planners,

benchmarks and the report generator; and
– tools/, the benchmarker execution scripts and configuration files,

along with other tools used. The tools/benchmarks/results-long/
directory contains the benchmark results from Sections 6.2.1 and 6.3.1.

To compile and run executables of this project, you need Java 1.8 update 40+
and Maven 3+. To run:
• TransportEditor, execute:

java -jar bin/TransportEditor-0.9.2-jar-with-dependencies.jar

from the TransportEditor-0.9.2/ directory; or

• the experiments from this work, execute:

./benchmark.sh configs/<config name>.json

from the TransportEditor-0.9.2/tools/benchmarks/ directory.
The VAL validator (needed for validation of plans in experiments) can be obtained
at: https://github.com/KCL-Planning/VAL.

TransportEditor User & Developer Manuals
A user manual explaining use-cases, the user interface, saving and loading files,
together with a developer manual explaining the architecture, technical choices,
and program flow is also available on the attached CD, in the directory:

TransportEditor-0.9.2/docs/manuals/.
Generated API documentation using JavaDoc is also available on the attached
CD, in the directory:

TransportEditor-0.9.2/docs/javadoc/.
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2. PDDL representations of Transport

(:action drive
:parameters (?v - vehicle ?l1 ?l2 - location)
:precondition (and

(at ?v ?l1)
(road ?l1 ?l2))

:effect (and
(not (at ?v ?l1))
(at ?v ?l2)
(increase (total-cost) (road-length ?l1 ?l2))))

(:action pick-up
:parameters (?v - vehicle ?l - location ?p - package

?s1 ?s2 - capacity-number)
:precondition (and

(at ?v ?l)
(at ?p ?l)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s2))

:effect (and
(not (at ?p ?l))
(in ?p ?v)
(capacity ?v ?s1)
(not (capacity ?v ?s2))
(increase (total-cost) 1)))

(:action drop
:parameters (?v - vehicle ?l - location ?p - package

?s1 ?s2 - capacity-number)
:precondition (and

(at ?v ?l)
(in ?p ?v)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s1))

:effect (and
(not (in ?p ?v))
(at ?p ?l)
(capacity ?v ?s2)
(not (capacity ?v ?s1))
(increase (total-cost) 1)))

Formulation of actions in PDDL for transport-strips.
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(:durative-action drive
:parameters (?v - vehicle ?l1 ?l2 - location)
:duration (= ?duration (road-length ?l1 ?l2))
:condition (and

(at start (at ?v ?l1))
(at start (road ?l1 ?l2))
(at start (>= (fuel-left ?v) (fuel-demand ?l1 ?l2))))

:effect (and
(at start (not (at ?v ?l1)))
(at end (at ?v ?l2))
(at start (decrease (fuel-left ?v) (fuel-demand ?l1 ?l2)))))

(:durative-action pick-up
:parameters (?v - vehicle ?l - location ?p - package)
:duration (= ?duration 1)
:condition (and

(at start (at ?v ?l))
(over all (at ?v ?l))
(at start (at ?p ?l))
(at start (>= (capacity ?v) (package-size ?p)))
(at start (ready-loading ?v)))

:effect (and
(at start (not (at ?p ?l)))
(at end (in ?p ?v))
(at start (decrease (capacity ?v) (package-size ?p)))
(at start (not (ready-loading ?v))) ; lock vehicle
(at end (ready-loading ?v)))) ; unlock vehicle

(:durative-action drop
:parameters (?v - vehicle ?l - location ?p - package)
:duration (= ?duration 1)
:condition (and

(at start (at ?v ?l))
(over all (at ?v ?l))
(at start (in ?p ?v))
(at start (ready-loading ?v)))

:effect (and (at start (not (in ?p ?v)))
(at end (at ?p ?l))
(at end (increase (capacity ?v) (package-size ?p)))
(at start (not (ready-loading ?v))) ; lock vehicle
(at end (ready-loading ?v)))) ; unlock vehicle

(:durative-action refuel
:parameters (?v - vehicle ?l - location)
:duration (= ?duration 10)
:condition (and

(at start (at ?v ?l))
(over all (at ?v ?l))
(at start (has-petrol-station ?l)))

:effect
(at end (assign (fuel-left ?v) (fuel-max ?v))))

Formulation of durative actions in PDDL for temporal Transport.
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3. TransportEditor
To enable effective transportation planning, we have developed TransportEditor,
a system for creating and visualizing transportation problems and plans. Specif-
ically, TransportEditor aims to be a problem editor and plan visualizer for the
Transport domain (and its variants). It is an intuitive and cross-platform graph-
ical desktop application written in Java (see attached screenshot).

It allows the users to create a planning session, where they select a Transport
domain variant, load a problem instance from PDDL (Section 1.4) or create a
new one from scratch. The road network of the problem is automatically laid
out and visualized for the users as a graph with locations as nodes and roads as
edges. Users can then tweak the layout, make changes to vehicle and package
properties and export the problem or domain back into PDDL.

They can also select an external planner referencing its executable file, or
select one of the built-in planners and try to solve the loaded problem using the
selected planner. Internal and external plan validators, like VAL (Howey and
Long, 2003), can also be selected to verify that the plans are correct. Once plans
are loaded and verified, it will let the users see a list of actions in the plan, or plot
a Gantt chart (Gantt, 1910), which is useful for observing concurrent actions in
temporal domain variants (Figure 6.5).

The best feature of TransportEditor is the option of tracing plans. We can
select any action, specify an exact time point or just step through the actions
in order and the road network on the left will display the current state of the
problem, as if all actions before the current point were applied to the start state.
It is possible to do all of this, and more, without ever leaving the TransportEditor
user interface.

TransportEditor will help researchers working on this domain fine-tune their
planners; they can visualize the various corner cases their planner fails to handle,
step through the generated plan and find the points where their approach fails.
A secondary motivation is to be able to test approaches for creating plans for
the domain. The basic user workflow of TransportEditor consists of the following
steps:

• Selecting which formulation of the Transport domain they want to work
with or create their own variant;

• Loading the PDDL or creating their own problem of the given domain.
TransportEditor then visualizes the given graph as good as it can;

• Iterating among the following options:

– Loading a planner executable and letting TransportEditor run the
planner on the loaded problem instance for a given time (the user
can cancel anytime), then loading the resulting plan;

– Possibly loading a pregenerated plan;
– Stepping through the individual plan actions and letting Transport-

Editor visualize them. The user can step forward and backward in the
plan and inspect each action result in great detail;
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Screenshot of a user tracing actions of a plan for a small temporal problem in
TransportEditor. The bubble in the middle shows details of a truck currently driv-
ing along a road between city-2-loc-6 and city-2-loc-3. The city-1-loc-1
location is plotted in a darker shade of red, which signifies that a petrol station
is present at the location.

– Editing the graph: adding/removing/editing the location or properties
of vehicles, packages, roads, locations and possibly petrol stations;

– Saving the currently generated plan;
– Saving the problem or domain (exporting to a PDDL file);

• Exit the application or go back to the first step.

TransportEditor is a part of this thesis and the reader can find it on the
attached CD (see Attachment 1 for more information). Both the TransportEditor
User & Developer Manuals are attached to this thesis in a digital format, offering
guidance when using the program and providing an in-depth description.

Screenshots displaying typical TransportEditor usage follow.
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Selecting a domain variant.

Running an external planner on a sequential problem.
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Tracing a sequential plan. Highlighted is the corresponding drive action and
the visualization of the vehicle (blue square) and the package it carries (purple

square) on the road graph.

Visualizing the plan as a Gantt chart.
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4. Accompanying software toolkit architecture
To run our experiments efficiently, we have implemented a software project, con-
fusingly called TransportEditor, of which the editor described in the previous
section is only a part. The “scaffolding” for running experiments, generating
reports, and the planner implementations that we will describe in the next two
chapters are all part of the project as well. The project is split into several
modules, listed in approximate dependency order:

• transport-thirdparty, a set of 3rd party libraries that have not been
published in a dependency management repository like Maven Central,5
making their compile-time download and linking impossible;

• transport-core, a module that contains code modeling the Transport do-
main and persisting it to disk;

• transport-planners, containing sequential and temporal planners, both
internal (implemented as a part of this project) and external (only calling
an executable of a different project);

• transport-benchmark, a set of tools for running repeatable experiments
on Transport datasets, possibly in parallel;

• transport-report, a collection of table generators and graph plotters, op-
erating on the results of benchmarks; and

• transport-editor, the module containing the graphical user interface of
the planning system TransportEditor. This module is only dependent on
transport-planners and all its dependencies.

Independent on the other modules is transport-docs, the module containing this
thesis, along with our other textual works relating to researching the Transport
domain. Information about the model in core and the editor is available in
the TransportEditor User & Developer Manuals. All the modules are written in
Java and attached to this thesis (see 1. CD contents for details). Also included
are a few shell scripts, usually for quick data conversion. The only important
scripts reside in the tools directory; the benchmark.sh script, used for running
experimental benchmarks, and generate-reports.sh, used for generating SVG
and PDF plots or LATEX tables of the scores and run times from benchmark
results.

The benchmarker takes as input a JSON (Bray, 2014) configuration file, runs
the specified benchmarks and returns a results.json output file in a different
JSON format (see attached grammars). In both of the figures are BNF grammars.
We write zero-or-more repeated statements using ( and )*. Also, [ and ] are used
for JSON lists, they do not mean an optional statement — we use ( and ) (without
the star) for that. Under <character>, we assume any valid UTF-8 character,
<double> means any non-negative IEEE compatible double precision floating-
point number, and <long> is any non-negative whole number smaller than or
equal to 263 − 1. Additionally, all file paths may use the ${transport.root}
variable, designating the root directory of the project.

5http://central.sonatype.org/

71

http://central.sonatype.org/


Below is the grammar of the input configuration JSON file in BNF. The token
<class> is expected to be a valid Java class name (including the package) and
present on the classpath. The <executable templ> token is expected to be a
valid executable planner with supplied parameters and {0} used to represent the
domain file path, {1} the problem file path, and {2} the output plan file path.

<config> ::= { "domain" : "<filepath>",
"problems" : { "<problem_name>" : <problem_config>

( , "<problem_name>" : <problem_config> )* },
"scoreFunctionType" : "<score_function>",
"planners": { "<planner_name>" : <planner_config>

( , "<planner_name>" : <planner_config> )* },
"threadCount": <integer>,
"timeout": <integer> }

<filepath> ::= <string>
<problem_name> ::= <string>
<problem_config> ::= { "filePath" : "<filepath>",

"bestScore" : <score> }
<score> ::= null | <float>
<score_function> ::= TOTAL_TIME | ACTION_COUNT
<planner_name> ::= <string>
<planner_config> ::= { "className" : "<class>"

( , "params" : "<executable_templ>" ) }
<class> ::= <string>
<executable_templ> ::= <string>
<string> ::= ( <character> )*

Finally, below is the grammar of the result configuration JSON file in BNF.
The tokens <action> and <tpa> were defined in Section 1.4. Note that this
grammar is only valid if concatenated with the previous grammar.
<results> ::= { "runs" : [ ( <run> ) ( , <run> )* ] }
<run> ::= { "actions" : [ ( <action> ) ( , <action> )* ],

"temporalPlanActions" : [ ( <tpa> ) ( , <tpa> )* ],
"domain" : "<string>",
"planner" : "<string>",
"problem" : "<string>",
"results" : <run_results> }

<action> ::= "<string>"
<tpa> ::= "<string>"
<run_results> ::= { "score" : <score>,

"bestScore" : <score>,
"exitStatus" : "<exit_status>",
"startTimeMs" : <timestamp>,
"endTimeMs" : <timestamp>,
"durationMs" : <timestamp>,
"quality" : <double> }

<exit_status> ::= UNSOVLED | INVALID | VALID | NOTVALIDATED | SUBOPT
<timestamp> ::= <long>

Apart from the results file, a plain text log containing information about
the planner runs is also produced. Both of these files are placed in the direc-
tory results/config file name/YYYYmmdd-HHMMSS/, under the directory where
benchmark.sh is placed. We can then use the generate-reports.sh script on
the results file, which will create a reports directory next to the results file,
containing all the generated report files.
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