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1. Number magic
Problem

Surely you’ve seen a similar exercise before:

• Think of a number between 1-5

• Multiply it by 2

• Add 2

• Multiply by 3

• Subtract the double of the original number

• Add 6

• Divide by 4

• Subtract the original number (again)

Answer and show your thinking:

• What’s the result?

• Will you always get the same result? Or just for the numbers 1-5?

• Why doesn’t it matter what number you start with?

Solution

• What’s the result?

Try it with at least one number.

• Will you always get the same result? Or just for
the numbers 1-5?

We could try all the numbers and compare the
results. What if we want to take all the numbers
from 1-1000? Or all natural numbers? Or all real
numbers? It looks like the result will always be
3. But, are we sure?

• Why doesn’t it matter what number you start
with?

Let’s try to write down the operations we are do-
ing. Let x be the starting number.

– Multiply it by 2 → 2x

– Add 2 → 2x+ 2

– Multiply by 3 → (2x+ 2) · 3

– Subtract the double of the original number
→ ((2x+ 2) · 3)− 2x

– Add 6 → (((2x+ 2) · 3)− 2x) + 6

– Divide by 4 → ((((2x+ 2) · 3)− 2x) + 6)/4

– Subtract the original number (again) →
(((((2x+ 2) · 3)− 2x) + 6)/4)− x

Let’s simplify the expression.

(((((2x+ 2) · 3)− 2x) + 6)/4)− x

= ((((((2x+ 2) · 3)− 2x) + 6)/4)− x

= (((((6x+ 6)− 2x) + 6)/4)− x

= (((4x+ 6) + 6)/4)− x

= ((4x+ 12)/4)− x

= (x+ 3)− x

= 3

We took any real number and with the help of le-
gal simplifications simplified it. We saw, that the
complex formula we started with is actually only
a complicated way of writing the number 3. That
means, that whatever we choose x to be, the ex-
pression will always yield 3 as it’s value and we’ll
always get 3 as a result of applying these opera-
tions.
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Figure 1: Source: [9]

2. Seven bridges of Königsberg [12]
Problem
The problem was to find a walk through the city that would cross

each bridge once and only once. The islands could not be reached by
any route other than the bridges, and every bridge must have been
crossed completely every time; one could not walk halfway onto the
bridge and then turn around and later cross the other half from the
other side (the walk need not start and end at the same spot). Can
you find such a walk? Is there even one?

Solution
Euler proved that the problem has no solution. First, Euler pointed

out that the choice of route inside each land mass is irrelevant. The
only important feature of a route is the sequence of bridges crossed.
This allowed him to reformulate the problem in abstract terms (lay-
ing the foundations of graph theory), eliminating all features except the list of land masses and the bridges
connecting them. In modern terms, one replaces each land mass with an abstract „vertex” or node, and each
bridge with an abstract connection, an „edge”, which serves as a record which pair of vertices is connected by
which bridge. The resulting mathematical structure is called a graph.

[9] → [5] → [10]
Since only the connection information is relevant, the shape of pictorial representations of a graph may be

distorted in any way, without changing the graph itself. Only the existence (or absence) of an edge between each
pair of nodes is significant. For example, it does not matter whether the edges drawn are straight or curved, or
whether one node is to the left or right of another.

Next, Euler observed that (except at the endpoints of the walk), whenever one enters a vertex by a bridge,
one leaves the vertex by a bridge. In other words, during any walk in the graph, the number of times one
enters a non-terminal vertex equals the number of times one leaves it. Now, if every bridge has been traversed
exactly once, it follows that, for each land mass (except for the ones chosen for the start and finish), the number
of bridges touching that land mass must be even (half of them, in the particular traversal, will be traversed
„toward” the landmass; the other half, „away” from it). However, all four of the land masses in the original
problem are touched by an odd number of bridges (one is touched by 5 bridges, and each of the other three are
touched by 3). Since, at most, two land masses can serve as the endpoints of a putative walk, the proposition
of a walk traversing each bridge once leads to a contradiction.

In modern language, Euler shows that the possibility of a walk through a graph, traversing each edge exactly
once, depends on the degrees of the nodes. The degree of a node is the number of edges touching it. Euler’s
argument shows that a necessary condition for the walk of the desired form is that the graph be connected and
have exactly zero or two nodes of odd degree. This condition turns out also to be sufficient – a result stated
by Euler and later proven by Carl Hierholzer. Such a walk is now called an Eulerian path or Euler walk in his
honor. Further, if there are nodes of odd degree, then any Eulerian path will start at one of them and end at
the other. Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have
an Eulerian path.

An alternative form of the problem asks for a path that traverses all bridges and also has the same starting
and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only
if, the graph is connected, and there are no nodes of odd degree at all. All Eulerian circuits are also Eulerian



paths, but not all Eulerian paths are Eulerian circuits.



3. 100 prisoners problem (The Locker Problem) [4]
Problem
The director of a prison offers 100 prisoners on death row, which are numbered from 1 to 100, a last chance.

In a room there is a cupboard with 100 drawers. The director puts in each drawer the number of exactly one
prisoner in random order and closes the drawers afterwards. The prisoners enter the room one after another.
Each prisoner may open and look into 50 drawers in any order and the drawers are closed again afterwards.
If during this search every prisoner finds his number in one of the drawers, all prisoners are pardoned. If just
one prisoner does not find his number, all prisoners have to die. Before the first prisoner enters the room, the
prisoners may discuss their strategy, afterwards no communication of any means is possible. What is the best
strategy for the prisoners?

Solution
If every prisoner selects 50 drawers at random, the probability that a single prisoner finds his number is 50%.

Therefore, the probability that all prisoners find their numbers is the product of the single probabilities which
is ( 1

2 )100 ≈ 0.0000000000000000000000000000008, a vanishingly small number. The situation appears hopeless
for the prisoners.

Strategy
There exists a better strategy though. The key to success is that the prisoners do not have to decide

beforehand which drawers they are going to open. Each prisoner can use the information gained from the
contents of previously opened drawers to help him decide which drawer to open next. Another important
observation is that this way the success of one prisoner is not independent of the success of the other prisoners.
[2]

In order to describe the strategy, not only the prisoners, but also the drawers are numbered from 1 to 100.
The strategy is now as follows: [3]

1. Each prisoner first opens the drawer with his own number.

2. If this drawer contains his number he is finished with his search and was successful.

3. Otherwise, the drawer contains the number of another prisoner and he next opens the drawer with this
number.

4. The prisoner repeats steps 2 and 3 until he finds his own number or has opened 50 drawers.

This approach ensures that every time a prisoner opens a drawer he either finds his own number or the
number of another prisoner he has not encountered so far.

Examples
That this is a promising strategy is illustrated with the following example using eight prisoners and drawers,

whereby each prisoner may open four drawers. The prison director has distributed the prisoners’ numbers into
the drawers in the following fashion

number of drawer 1 2 3 4 5 6 7 8
number of prisoner 7 4 6 8 1 3 5 2

The prisoners now act as follows:

• Prisoner 1 first opens drawer 1 and finds number 7. Then he opens drawer 7 and finds number 5. Then
he opens drawer 5 where he finds his own number and is successful.

• Prisoner 2 opens drawers 2, 4, and 8 in this order. In the last drawer he finds his own number 2.

• Prisoner 3 opens drawers 3 and 6, where he finds his own number.

• Prisoner 4 opens drawers 4, 8, and 2 where he finds his own number. An outside observer could have
derived this from the information gained by prisoner 2.



• That prisoners 5 to 8 will also find their numbers can also be derived from the information gained by the
first three prisoners.

In this case, all prisoners will be successful in finding their numbers. This is, however, not always the case.
In the following example the prison director has distributed the numbers like this:

number of drawer 1 2 3 4 5 6 7 8
number of prisoner 3 1 7 5 8 6 4 2

In this case, prisoner 1 opens drawers 1, 3, 7, and 4, at which point he has to stop unsuccessfully. Except
for prisoner 6, who directly finds his number, all other prisoners are also unsuccessful.

Permutation representation
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Figure 2: Graph representations of the permutations
(1 7 5)(2 4 8)(3 6) and (1 3 7 4 5 8 2)(6). Source: [7], [6]

The prison director’s assignment of
prisoner numbers to drawers can mathe-
matically be described as a permutation
of the numbers 1 to 100. Such a permuta-
tion is a one-to-one mapping of the set of
natural numbers from 1 to 100 to itself. A
sequence of numbers which after repeated
application of the permutation returns to
the first number is called a cycle of the
permutation. Every permutation can be
decomposed into disjoint cycles, that is cy-
cles which have no common elements. The
permutation of the first example above can
be written in cycle notation as

(1 7 5)(2 4 8)(3 6)

and thus consists of two cycles of length 3 and one cycle of length 2. The permutation of the second example
is accordingly
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Figure 3: Probability distribution
of the length of the longest cycle
of a random permutation of the
numbers 1 to 100. The green area
corresponds to the survival prob-
ability of the prisoners. Source:
[11]

(1 3 7 4 5 8 2)(6)

and consists of a cycle of length 7 and a cycle of length 1. The cycle
notation is not unique since a cycle of length l can be written in l different
ways depending on the starting number of the cycle. During the opening
the drawers in the above strategy, each prisoner follows a single cycle which
always ends with his own number. In the case of eight prisoners, this cycle-
following strategy is successful if and only if the length of the longest cycle
of the permutation is at most 4. If a permutation contains a cycle of length
5 or more, all prisoners whose numbers lie in such a cycle will not have
reached their own number after 4 steps.

Probability of success
In the initial problem, the 100 prisoners will be successful if the longest

cycle of the permutation has a length of at most 50. Their survival prob-
ability is therefore equal to the probability that a random permutation of
the numbers 1 to 100 contains no cycle of length greater than 50. This probability is now determined.

A permutation of the numbers 1 to 100 can contain at most one cycle of length l > 50. There are exactly(100
l

)
ways to select the numbers of such a cycle (see combinations). Within this cycle, these numbers can be

arranged in (l− 1)! ways since there are l possibilities to select the starting number of the cycle. The remaining



numbers can be arranged in (100 − l)! ways. Therefore, the number of permutations of the numbers 1 to 100
with a cycle of length l > 50 is equal to(

100
l

)
· (l − 1)! · (100− l)! = 100!

l

The probability, that a (uniformly distributed) random permutation contains no cycle of length greater than
50 is with the formula for single events and the formula for complementary events thus given by

1− 1
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(
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)
= 1−

(
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)
= 1− (H100 −H50) ≈ 0.31183

Figure 4: The harmonic numbers are approx-
imately given by the area under the hyper-
bola and can therefore be approximated by
a logarithm. Source: [8]

where Hn is the n-th harmonic number. Therefore, using the
cycle-following strategy the prisoners survive in a surprising 31%
of cases. [3]

Asymptotics
If 2n instead of 100 prisoners are considered, where n an

arbitrary natural number, the prisoners’ survival probability with
the cycle-following strategy is given by

1− (H2n −Hn) = 1− (H2n − ln 2n) + (Hn − lnn)− ln 2

With the Euler Mascheroni constant γ for n→∞

lim
n→∞

(Hn − lnn) = γ

holds, which results in an asymptotic survival probability of

lim
n→∞

(1−H2n +Hn) = 1− γ + γ − ln 2 = 1− ln 2 ≈ 0.30685

Since the sequence of probabilites is monotonically decreasing, the prisoners survive with the cycle-following
strategy in more than 30% of cases independently of the number of prisoners. [3]

Optimality
In 2006, Eugene Curtin and Max Warshauer gave a proof for the optimality of the cycle-following strategy.

The proof is based on an equivalence to a related problem in which all prisoners are allowed to be present in the
room and observe the opening of the drawers. This equivalence is based on the correspondence of the (normal-
ized) cycle notation and the one-line notation of permutations. In the second problem, the survival probability
is independent of the chosen strategy and equal to the survival probability in the original problem with the
cycle-following strategy. Since an arbitrary strategy for the original problem can also be applied to the second
problem, but cannot attain a higher survival probability there, the cycle-following strategy has to be optimal. [2]



Bonus problems
B1. The King’s Wise Men [13]

Problem
The King called the three wisest men in the country to his court to decide who would become his new

advisor. He placed a hat on each of their heads, such that each wise man could see all of the other hats, but
none of them could see their own. Each hat was either white or blue. The king gave his word to the wise men
that at least one of them was wearing a blue hat - in other words, there could be one, two, or three blue hats,
but not zero. The king also announced that the contest would be fair to all three men. The wise men were
also forbidden to speak to each other. The king declared that whichever man stood up first and announced the
color of his own hat would become his new advisor. The wise men sat for a very long time before one stood up
and correctly announced the answer. What did he say, and how did he work it out?

Solution
This is one of the simplest induction puzzles and one of the clearest indicators to the method used. Suppose

that there were one blue hat. The person with that hat would see two white hats, and since the king specified
that there is at least one blue hat, that wise man would immediately know the color of his hat. However, the
other two would see one blue and one white hat and would not be able to immediately infer any information
from their observations. Therefore, this scenario would violate the king’s specification that the contest would
be fair to each. So there must be at least two blue hats.

Suppose then that there were two blue hats. Each wise man with a blue hat would see one blue and one white
hat. Since they have already realized that there must be at least two blue hats, they would then immediately
know that each were wearing a blue hat. However, the man with the white hat would see two blue hats and
would not be able to immediately infer any information from his observations. This scenario, then, would also
violate the specification that the contest would be fair to each. So there must be three blue hats.

Since there must be three blue hats, the first man to figure that out will stand up and say blue.

B2. Two statisticians in the woods [1]
Hypothesis
If two statisticians were to lose each other in an infinite forest, the first thing they would do is get drunk.

That way, they would walk more or less randomly, which would give them the best chance of finding each other.
However, the statisticians should stay sober if they want to pick mushrooms. Stumbling around drunk and
without purpose would reduce the area of exploration, and make it more likely that the seekers would return
to the same spot, where the mushrooms are already gone.

Solution
An elaborate text on this problem is out of scope of this document. You can find it in the bibliography[1].

Presentation: http://oskopek.com/2015_popmath_gymy/eng_presentation.pdf

Exercises with solutions: http://oskopek.com/2015_popmath_gymy/eng_exercises.pdf

http://oskopek.com/2015_popmath_gymy/eng_presentation.pdf
http://oskopek.com/2015_popmath_gymy/eng_exercises.pdf
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